多模态可解释性的创新方案!超好发定会顶刊的创新点!

多模态可解释性(Multimodal Interpretability)是指在多模态人工智能系统中,理解和解释模型如何处理和整合来自不同模态(如文本、图像、音频、视频等)的输入数据,并将其转化为输出结果的能力

我还整理出了相关的论文+开源代码,以下是精选部分论文

更多论文料可以关注AI科技探寻,发送:111  领取更多[论文+开源码】   

论文1

标题:

MusicLIME: Explainable Multimodal Music Understanding

MusicLIME:可解释的多模态音乐理解

法:

  • 多模态模型架构:结合文本(歌词)和音频模态,使用基于Transformer的模型架构,将歌词和音频的嵌入向量拼接后输入分类头进行预测。

  • MUSICLIME解释方法:提出了一种模型不可知的特征重要性解释方法,通过扰动输入特征并观察预测变化,揭示音频和歌词特征之间的交互作用及其对预测的贡献。

创新点:

  • 多模态交互解释:与传统单模态方法相比,MUSICLIME能够揭示音频和歌词特征之间的交互作用,提供更全面的决策过程视图,解决了单模态方法可能导致的不完整或误导性解释问题。

  • 全局解释聚合:通过全局平均重要性方法聚合局部解释,更适用于多模态模型的分析,避免了因音频特征影响多个类别而导致的权重低估问题。

  • 性能提升:多模态模型在音乐流派和情感分类任务中表现优于单模态模型,例如在Music4All数据集上,多模态模型在情感分类任务中达到了48.53%的准确率,相比歌词模型(32.33%)和音频模型(48.29%)均有提升;在流派分类任务中,多模态模型准确率达到57.34%,显著高于歌词模型(45.14%)和音频模型(53.75%)。

  • 模型不可知性:MUSICLIME方法不依赖于特定的模型架构,可轻松应用于不同的多模态音乐模型,具有广泛的适用性。

image.png

论文2

标题:

SCITUNE: Aligning Large Language Models with Scientific Multimodal Instructions

SCITUNE:将大型语言模型与科学多模态指令对齐
法:
  • 科学多模态指令框架:提出了SciTune框架,通过科学概念对齐和科学指令微调两个阶段,将大型语言模型与科学多模态指令对齐。

  • 多模态架构:基于LLaMA语言解码器和CLIP视觉编码器构建多模态模型,通过多模态适配器将视觉编码器的输出投影到语言解码器中。

创新点:

  • 科学多模态指令对齐:首次将大型语言模型与科学多模态指令对齐,使模型能够更好地理解和执行科学领域的复杂指令,填补了现有研究的空白。

  • 性能提升:在ScienceQA多模态推理基准测试中,LLaMA-SciTune模型平均准确率达到90.03%,超过了人类平均水平(88.40%),并且在多个子类别中表现优于人类。与仅使用机器生成数据微调的模型相比,性能提升显著。

  • 模型规模的影响:实验表明,使用更大规模的语言解码器(如13B模型)可以显著提升多模态推理性能,与7B模型相比,准确率提升了近5%,这为未来使用更大模型进行科学多模态任务提供了有力支持。

image.png



论文3

标题:

FakeBench: Probing Explainable Fake Image Detection via Large Multimodal Models

FakeBench:通过大型多模态模型探测可解释的假图像检测
方法:
  • 多模态数据库构建:提出了FakeBench,一个多模态数据库,包含详细的文本真实性描述,用于探测大型多模态模型(LMMs)在假图像检测中的表现。

  • 细粒度分类体系:基于人类感知,构建了一个关于生成性视觉伪造的细粒度分类体系,并通过人机协作策略收集伪造描述。

创新点:

  • 多模态解释能力评估:首次系统地评估了LMMs在假图像检测中的多模态解释能力,包括检测、推理、解释和细粒度分析(如纹理、边缘、清晰度等)。

  • 性能提升:部分LMMs在零样本(zero-shot)假图像检测任务中接近人类智能水平,甚至超越了专门的检测模型。例如,GPT-4V在FakeClass数据集上的准确率达到59.87%,显著高于随机猜测(42.27%)。

  • 推理与解释能力:尽管LMMs在检测任务中表现出色,但在推理和解释任务中仍有提升空间。例如,InstructBLIP在解释任务中表现最佳,但仍有改进余地。

image.png

论文4

标题:

Learn to Explain: Multimodal Reasoning via Thought Chains for Science Question Answering

通过思维链进行多模态推理以回答科学问题

法:

  • 科学问题回答基准测试:提出了ScienceQA,一个包含约21k多模态选择题的基准测试,覆盖自然科学、社会科学和语言科学等多个领域,并提供了详细的答案、讲座和解释。

  • 思维链(CoT):设计了语言模型,使其能够生成讲座和解释作为思维链,以模拟人类回答ScienceQA问题时的多步推理过程。

创新点:

  • 多模态科学问题回答基准测试:ScienceQA是第一个大规模多模态科学问题回答数据集,包含丰富的领域多样性和详细的解释,为AI系统提供了更全面的测试环境。

  • 性能提升:通过引入思维链(CoT),模型在少样本(few-shot)和微调(fine-tuning)设置下的表现均有所提升。例如,GPT-3在使用CoT提示时的准确率从74.04%提升到75.17%(+1.20%),而微调后的UnifiedQA在使用CoT时的准确率从70.12%提升到74.11%(+3.99%)。

  • 解释生成能力:模型能够生成与人类标注的解释相匹配的合理解释,其中65.2%的解释达到了人类评估的标准。

image.png

 

更多论文料可以关注AI科技探寻,发送:111  领取更多[论文+开源码】   

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值