“KAN+小波变换”是一种结合了Kolmogorov-Arnold网络(KAN)和小波变换的神经网络架构,主要用于提升模型的可解释性和性能。
我还整理出了相关的论文+开源代码,以下是精选部分论文
更多论文料可以关注:AI科技探寻,发送:111 领取更多[论文+开源码】
论文1
标题:
FC-KAN: Function Combinations in Kolmogorov-Arnold Networks
Kolmogorov-Arnold网络中的函数组合
方法:
-
函数组合:提出了一种新的Kolmogorov-Arnold网络(FC-KAN),通过在低维数据中组合流行的数学函数(如B样条、小波和径向基函数)来捕捉输入数据的特征。
-
多种组合方法:探索了多种函数输出的组合方法,包括求和、逐元素乘积、求和与乘积的组合、二次和三次函数表示、连接以及连接后的线性变换等。
创新点:
-
函数组合的性能提升:通过组合B样条和高斯差分(DoG)的输出,FC-KAN在MNIST数据集上达到了97.93%的验证准确率,在Fashion-MNIST上达到了89.99%的验证准确率,显著优于其他KAN网络和MLP。
-
低维数据的高效利用:通过在低维数据(如输出层)中进行函数组合,避免了高维数据计算带来的内存错误和效率问题。
-
多种组合方法的探索:发现使用二次函数表示的组合方法在性能上优于其他组合方法,同时保持了较低的训练时间。
-
模型性能的提升:FC-KAN在训练损失和验证准确率上均优于其他KAN网络和MLP,尤其是在处理图像分类任务时表现更为突出。
论文2
标题:
Wav-KAN: Wavelet Kolmogorov-Arnold Networks
小波Kolmogorov-Arnold网络
方法:
-
小波函数集成:提出了一种新的神经网络架构Wav-KAN,将小波函数集成到Kolmogorov-Arnold网络结构中,用于高效地捕捉输入数据的高频和低频成分。
-
多分辨率分析:利用离散小波变换(DWT)进行多分辨率分析,避免了重新计算前面步骤的细节,并结合了数据点密集区域的局部详细信息和稀疏区域的全局趋势。
创新点:
-
性能提升:Wav-KAN在训练速度和测试准确率上均优于Spl-KAN和MLP。例如,使用Derivative of Gaussian(DoG)小波时,Wav-KAN的测试准确率显著高于Spl-KAN。
-
多分辨率分析的优势:通过小波的多分辨率分析能力,Wav-KAN能够更好地处理高频和低频数据,避免了过拟合到噪声的问题。
-
参数效率:与Spl-KAN相比,Wav-KAN在参数数量上更少,且训练速度更快,尤其是在处理高维数据时表现出更高的效率。
-
小波选择的重要性:实验结果表明,不同小波函数的选择对模型性能有显著影响,如Mexican hat和Morlet小波在MNIST数据集上表现出色。
论文3
标题:
A comprehensive survey on Kolmogorov Arnold networks (KAN)
Kolmogorov-Arnold网络的综合综述
方法:
-
Kolmogorov-Arnold表示定理:基于Kolmogorov和Arnold的定理,将多变量连续函数表示为有限数量的单变量函数的叠加。
-
网络架构设计:引入可学习的单变量函数替代传统神经网络中的固定线性权重,增强模型的灵活性和可解释性。
创新点:
-
灵活性提升:通过引入可学习的单变量函数,KAN能够动态调整激活函数,适应不同的数据模式,显著提升了模型的灵活性。
-
高维数据处理能力:在处理高维数据时,KAN表现出更高的准确性和效率,例如在高光谱图像分类和时间序列分析中优于传统方法。
-
可解释性增强:KAN的可学习激活函数使得模型的内部机制和决策过程更加直观,提升了模型在需要高可解释性的领域的适用性,如医学诊断和金融预测。
-
参数优化:与传统神经网络相比,KAN显著减少了参数数量,例如卷积KAN(Conv-KAN)在保持高准确率的同时,参数数量仅为传统卷积神经网络(CNN)的一半
论文4
标题:
A new method for classifying colon cancer patients and healthy people from FTIR signals using wavelet transform and machine learning techniques
一种基于小波变换和机器学习技术从FTIR信号中分类结肠癌患者和健康人的新方法
方法:
-
小波变换:使用小波变换将FTIR信号分解为不同的子带,提取每个子带的统计特征。
-
特征提取:从FTIR信号的子带中提取多种统计特征,包括熵、标准差、平均绝对值、简单平方积分、波形长度、最大最小值差和零交叉数。
创新点:
-
分类性能提升:通过小波变换提取的特征,使用SVM分类器达到了97.14%的分类准确率,显著高于传统方法。
-
信号完整性分析:与以往研究不同,该方法直接对FTIR信号的整体进行分析,而不是仅依赖于特定的峰值或比率,从而保留了信号中更多的信息。
-
快速决策:通过测量液体形式的血浆样本,避免了样本干燥所需的时间,加快了决策过程。
-
多特征综合分析:结合多种统计特征进行分类,提高了模型对复杂信号的识别能力,尤其是在1800-1300 cm^-1波数范围内的分类性能。
更多论文料可以关注:AI科技探寻,发送:111 领取更多[论文+开源码】