户外环境下基于视觉-运动协调的移动机器人自主导航
1. 引言
随着机器人设计历经四代发展,工业机器人、移动机器人和人形机器人等不同分支已取得显著进展。然而,构建能自主移动和操作、替代人类完成各种任务的人工智能机器人,仍是人类的持续追求。对于自主移动机器人而言,要在环境中成功执行任务,路径规划和导航需同时处理。路径规划旨在确定起点和目标点间的无障碍物轨迹,而环境表示和建模在其中起着重要作用。
机器人没有人类复杂的视觉系统,为在现实环境中操作和识别图像中的物体,它需具备自行形成视觉感知的能力,将图像分割成有意义的区域。本文提出一种基于TD - 学习解决未知环境中移动机器人导航问题的新方法,该方法不依赖坐标信息,实验模拟表明配备感知学习和行为学习系统的移动机器人能在现实环境中成功完成导航任务。
2. 相关工作
路径规划是自主移动机器人领域研究最多的任务之一,可分为全局路径规划(GPP)和局部路径规划(LPP)。
2.1 全局路径规划(GPP)
- 定义 :在完全已知的环境中进行路径规划,首先构建环境的全局地图,然后使用优化算法在地图模型下搜索最优路径。
- 方法特点 :GPP方法通常寻求“最短”“最节能”“最快”的路径,但由于其属于NP - 难问题,实际应用中因时间和空间复杂度,路径最优性并非必要。常用的解决方法包括:
- 传统方法 :基于计算几何的路线图表示,如可见性图方法、最短路径方法和Voronoi图。
订阅专栏 解锁全文
27

被折叠的 条评论
为什么被折叠?



