自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(277)
  • 问答 (1)
  • 收藏
  • 关注

原创 transformer

位置前馈网络位置前馈网络就是一个全连接前馈网络,每个位置的词都单独经过这个完全相同的前馈神经网络。其由两个线性变换组成,即两个全连接层组成,第一个全连接层的激活函数为 ReLU 激活函数。残差连接和层归一化编 码 器 结 构 中 有 一 个 需 要 注 意 的 细 节 : 每 个 编 码 器 的 每 个 子 层 (Self-Attention 层和 FFN 层)都有一个残差连接,再执行一个层标准化操作,整个计算过程可以表示为位置编码到目前为止,我们所描述的模型中缺少一个东西:表示序列中词顺序的方法。

2025-08-28 20:58:16 550

原创 Transformer 模型详解

Multi-head Attention 的本质是,在参数总量保持不变的情况下,将同样的 Query,Key,Value 映射到原来的高维空间的不同子空间中进行 Attention的计算,在最后一步再合并不同子空间中的 Attention 信息。它可以让编码器在对特定词进行编码时使用输入句子中的其他词的信息(可以理解为:当我们翻译一个词时, 不仅只关注当前的词,而且还会关注其他词的信息)。对于分数低的位置,相乘后的值就越小,这些位置的词可能是相关性不大,我们就可以忽略这些位置的词。

2025-08-27 21:11:16 914 1

原创 大模型微调的方法

与传统的微调范式不同,前缀调整提出了一种新的策略,即在预训练的语言模型(LM)输入序列前添加可训练、 任务特定的前缀,从而实现针对不同任务的微调。直观上,大型模型微调即是向模型“输入”更多信息,对模型的特定功能进行“优化”,通过输入特定领域的数据 集,使模型学习该领域知识,从而优化大模型在特定领域的 NLP 任务中的表现,如情感分析、实体识别、文本分 类、对话生成等。这种方法可以在改善模型对特定任务的响应时,不需要调整或重新训练模型中的所有参数,从而在节省计算资源的同时保持或提升模型性能。

2025-08-26 21:03:24 678 1

原创 Huggingface 的介绍,使用

然后打开刚才的 ChatGLM2-6B 里的 web_demo.py,修改里面的模型和 AutoTokenizer 目录,为刚才 git 模型的目录,例如我在。#下面这种方式可以自动加载 bert-base-uncased 中使用的模型(包括了输出部分),有最后的全连接输出层。Spaces(分享空间),包括社区空间下最新的一些有意思的分享,可以理解为 huggingface 朋友圈。Models(模型),包括各种处理 CV 和 NLP 等任务的模型,上面模型都是可以免费获得。

2025-08-21 22:25:11 831 1

原创 cartographer 优化后结果的传递与处理

已被广泛的使用在多个平台上来渲染图形界面,包括。在内的各种输出设备。只不过这里保存的不再是空闲的概率了。地图的栅格值的最大最小分别是。地图的上遏制的最大最小分别是。函数将前端匹配的结果保存到。图形渲染引擎库,它支持包括。tsd 值转成的value。0.3 与 -0.3.可视化所有的节点位姿。值的同时还保存了权重值。类使用前端数据的函数。类使用后端数据的函数。

2025-08-18 21:46:09 446 1

原创 从零搭建3D激光slam框架-基于开源框架的实现方案

3D-SLAM 建图与定位框架实施方案与技术路线

2025-08-16 08:54:32 43 1

原创 cartographer 后端优化流程

子图 通过对前一个子图到后一个子图的坐标变换进行累计。包含了优化后和还没有进行优化的 子图在。坐标系下的位姿 是通过 第一个子图在。子图原点指向校准后的节点间的坐标变换。当做下一次分支定界算法的分数阈值。坐标系下的位姿乘以这个坐标变换。子图原点指向节点间的坐标变换。坐标系下的位姿变换 得到的。只要当前层的候选解的得分。乘以这个节点校准后的位姿。与子图原点间的坐标变换。坐标系原点间的坐标变换。坐标系原点间的坐标变换。对下一层分辨率地图上的。坐标系下的第一帧的位姿。坐标系下的位姿 是通过。

2025-08-12 21:14:21 581

原创 从零搭建3D激光slam框架-mid360雷达imu时间戳对齐与数据处理

/计算每个点的时间戳,偏移时间us,每个点相对于起始点的时间偏移量,转单位秒,精度us.//从队列获取时间数。

2025-08-10 08:56:24 61

原创 多传感器融合

被移出滑窗,同时以先验的方式继续影 响着滑窗内状态的优化,在整个优化建模中,有着显著的影响,同样,在其他多传感器融合算法中,传感器之间的标定结果的精度。上往往有着经过良好标定的结果,然而,绝大多数情况下,传感器之间的外参需要我。的时间也会增加很多,一方面实时性遭遇了挑战,另一方面,很久之前的状态似乎也。没有继续更新的必要。的规模,通常来讲滑动窗口需要好处理边缘化的问题,另一方面,我们可以使用因子。雷达的融合框架,视觉框架中一般无法直接获得尺度或特征点深度信息,因此,单目。

2025-08-05 21:01:20 541

原创 cartographer-Ceres实现2D扫描匹配

坐标系下的相对坐标变换 与 通过里程计数据插值出的相对坐标变换 的差值作为残差项。将点云的位置与角度在栅格地图上的每个栅格都获取一下得分。在不存在先验位姿的情况下确定机器人在地图中的位置。个节点位姿插值出来的相对位姿 的差值作为残差项。存在先验位姿的情况下确定机器人在地图中的位置。数据进行插值得到的相对坐标变换的差值作为残差项。个相对位姿变换的差 的最小二乘问题进行求解。坐标系下的相对坐标变换 的差值作为残差项。平移和旋转的残差项是逼近于先验位姿的。通过点云落在栅格上对应的栅格值的和。

2025-08-04 20:57:22 893

原创 从零搭建3D激光SLAM框架-原版fastlio2-ros1回顾

香港大学MaRS实验室论文(IEEE-RAL,TRO) ,高计算效率、高鲁棒性的雷达惯性里程计 , 紧耦合迭代卡尔曼滤波融合IMU和在FAST-LIO基础上,提出了ikdtree 数据结构 实现增量式的地图更新 , 代码已开源至Github。与其它开源框架相比,具有更优越的表 现(精度、计算速度) 是目前最先进的开源LIO框架之一 ,涵盖流形、李群李代数、IMU积分、雷达残差、卡尔曼滤波等多方位的知识 , 学会FAST-LIO。

2025-08-03 09:16:07 42

原创 cartographer 概率栅格地图

Bresenham算法主要思路说白了就是:下一个要画的点该画在哪里,要么在斜边,要么在侧边。斜边就是x坐标加1的同时y坐标也加1。因为已知起点坐标和终点坐标分别(x1, y1),(x2, y2),所以可以确定这条线段的位置。最后根据要画的这个点距离这个线段的位置的大小,来确定该画在斜边还是侧边。斜边近就画斜边,侧边近就画侧边。形成的点云地图不需要自己手动实现点云的数据结构。视觉 SLAM形成的点云地图也可以用。能够将环境通过地图的形式表达出来。的栅格地图需要自己手动实现。, 没有通用的数据结构。

2025-07-31 22:53:30 697

原创 无监督MVSNet系列网络概述

次:在第一次迭代得到的深度图为中心上下采样几层(局部扰动),再。实现无监督 深度图估计,克服不同视图下的光照变化 和遮挡问题。所有邻域相对中心像素的权重与对应深度乘积和(参加公式。引导计算一个残差与初始深度图加和即为优化后的深。网络的结构非常一致,从头到尾全部使用的是。对应的概率,然后求期望得到估计值。神经网络最后一层得到每个类别的得分。模型预测的类别概率输出与真实类别的。,自适应采样一些邻域内的像素进行。图像上,计算两者的梯度和颜色差异。形式进行交叉熵损失函数的计算。使用鲁棒的光度一致性。

2025-07-30 21:02:48 722

原创 cartographer 点云数据的预处理

坐标系原点处的点云 变换成 原点位于匹配后的位姿处的点云。坐标系原点处的点云 变换成 原点位于匹配后的位姿处的点云。将原点位于机器人当前位姿处的点云 转成 原点位于。认为位姿推测器推测出来的位姿与姿态是准确的。用于根据里程计数据计算线速度时姿态的预测。将 原点位于匹配后的位姿处的点云 返回到。将 原点位于匹配后的位姿处的点云 返回到。可以考虑使用里程计的角度进行计算。进行多个雷达点云数据的时间同步。用的是里程计数据队列开始和末尾的。通过里程计数据队列开始和末尾的。通过里程计数据队列开始和末尾的。

2025-07-29 21:41:02 1067

原创 MVSNet系列网络概述

得到在右图的匹配点 如果当前深度对应在真实曲面上那么 与 对应的拍摄到的物体是一样的,可以通 过一些方法来计算它们的匹配度也就是我们说的匹配代价。计算每个像素点在不同深度层的匹配代价(判断当前深度是否在曲面上) 左图的像素坐标 在当前深度下可以根据单应性矩阵H。在模型训练的优化部分,调整最多的一个参数就是学习率,合理的学习率可以使优化器快速收敛。由上面得到了像素在每个深度层的概率,传统算法中会采用选取概率最大的深度值作为最终的。根据匹配代价,从深度层中选择代价最小的层对应的深度即是计算的最佳深度。

2025-07-28 21:06:15 937

原创 从零搭建3D激光slam框架-基于mid360雷达节点实现

1 硬件介绍:livox-mid360是大疆的一款非重复扫描固态激光雷达,20万点/秒,可以调整帧率,内部自带6轴IMU,与点云实现硬件同步。售价3999,线缆399,线缆包括网线电源与串口线,网线与雷达通信负责传输雷达点云与IMU数据,电源12V2A,给雷达供电,串口用于与雷达通信,获取雷达工作状态。2 软件介绍:雷达软件分为上位机点云测试软件LivoxViewer_2.3.0_Win64,雷达LIVOX-SDK2()雷达驱动ROS2节点,点云测试软件可以查看点云形态,测试点云质量和通信稳定性。

2025-07-27 10:41:41 237

原创 cartographer 传感器数据走向

/ 将数据传入 callback() 函数进行处理,并将这个数据从数据队列中删除。// 遍历所有的数据队列, 找到所有数据队列的第一个数据中时间最老的一个数据。// 正常情况, 数据时间都超过common_start_time。可以对生产者类和消费者类进行独立的复用与扩展。复用:通过将生产者类和消费者类独立开来。将两个类之间的耦合度降到最低。生产者和消费者之间不直接依赖。构造的时候传入了一个函数。如果消费者吞吐数据很慢。生产者将数据丢到缓冲区。生产者直接调用消费者。两者是同步(阻塞)的。

2025-07-26 10:14:42 837

原创 pytorch常用函数

在模型训练的优化部分,调整最多的一个参数就是学习率,合理的学习率可以使优化器快速收敛。一般在训练初期给予较大的学习率,随着训练的进行,学习率逐渐减小。,当调整学习率之后,让学习率调整策略冷静一下,让模型再训练一段。以余弦函数为周期,并在每个周期最大值时重新设置学习率。以余弦函数为周期,并在每个周期最大值时重新设置学习率。最小学习率,即在一个周期中,学习率最小会下降到。一个计算学习率调整倍数的函数,输入通常为。学习率衰减的最小值,当学习率变化小于。,每一个元素代表何时调整学习率,修饰符维护被维护函数的签名。

2025-07-24 20:43:40 728

原创 Cartographer_ros代码阅读

回环检测与后端位姿图优化都不会对前端的任何坐标产生作用。是表达被回环检测与位姿图优化所更改后的坐标系。单线点云与多回声波雷达点云都是先经过。这个坐标系与坐标系下的机器人的坐标。函数将点云点云从雷达坐标系下转到。一经扫描匹配之后就不会再被改变。成员函数指针的声明与初始化。通过对象来调用成员函数指针。是否将变换投影到平面上。但坐标系本身不会发生变化。这个坐标系下的节点坐标。一种是多回声波雷达点云。中存在两个地图坐标系。类的回调函数进来只有。

2025-07-23 21:04:31 689

原创 PyTorch常用工具

优化是指在每个训练步骤中调整模型参数以减少模型误差的过程。梯度计算,为了优化神经网络中参数的权值,我们需要计算损失函数对参数的导数,可以直接。但是,在某些情况下,我们并不需要这样做,例如,当我们训练了模型,只是想跑。于稀疏数据或者特征,有时我们可能想更新快一些对于不经常出现的特征,对于常出现的特征。因此,我们需要能够计算关于这些变量的损失函数的梯度。层能够用全部训练数据的均值和方差,即测试过程中要保证。的梯度,然后对参数进行更新,是最常见的优化方法。模型将学习到的参数存储在一个内部状态字典中,称为。

2025-07-22 20:44:23 941

原创 卷积神经网络

虚线残差块,仅在conv3_1, conv4_1,conv5_1中使用,在卷积神经网络中通常会在相邻的卷积层之间加入一个池化层,是一种很强的先验,使特征学习包含某种程度自由度,能容忍。在深层网络(50,101,152)中除了上面提到的。卷积过程中,不是逐像素,而是有个步长如右图所示。公式如下,如果得到的大小不是整数,则向下取整也就。隐藏层只能使用非线性激活函数,不能使用线性,小批的梯度下降,这种方法把数据分为若干个批,,所以计算的过程中如右图所示,卷积的时候是。个参数计算然后加和得到的结果是当前像素卷积。

2025-07-20 22:27:15 752

原创 Python入门

字典是一种映射类型,字典用 { } 标识,它是一个无序的 键(key) : 值(value) 的集合。:如果你需要一段运行很快的关键代码,或者是想要编写一些不愿开放的算法,你可以使用C或C++完成那。:一行语句换行使用\,在 [], {}, 或 () 中的多行语句,不需要使用反斜杠 \。:Python有相对较少的关键字,结构简单,和一个明确定义的语法,学习起来更加简单。将某个模块中的全部函数导入,格式为: from somemodule import *,来使选择元组的长度与数组的维度相同。

2025-07-19 22:08:12 471

原创 cartorgapher的编译与运行

命令是设置当前的终端 可以执行的包与节点的地址集合的。在雷达数据远距离的点不准时一定要减小这个值。的软件源设置成清华的或者其他的中国境内的源。在网盘链接里 数据集文件夹 中下载数据集。时就会出现 找不到包或找不到节点的。在某个文件夹内部空白处单击鼠标右键。一定要确保之前的依赖项全部安装成功。如果提示脚本不是一个可执行的文件。如果提示脚本不是一个可执行的文件。可以改成自己想要保存的文件夹地址。因为代码的注释是处于更新状态的。相当于减小了需要处理的点数。相当于减小了匹配时的搜索量。

2025-07-18 21:18:36 983

原创 Image 和 IMU 时间戳同步

时间戳同步问题及意义什么是时间戳同步为什么要时间戳同步2时间戳延迟估计方法基于轨迹匀速模型的时间戳补偿算法基于视觉特征匀速模型的时间戳补偿算法两匀速模型算法对比3时间戳同步算法扩展其他时间戳延迟估计算法VIO初始化阶段的时间戳估计时间戳同步初探时间戳用途:传感器数据被采集时刻t标注,用于数据对齐融合。VIO例子:如图1中上部分所示,1时刻相机姿态已知,其2时刻的姿态可以通过1到4之间的IMU数据进行预测。错误的时间戳将导致错误的姿态约束。

2025-07-16 21:07:46 1046

原创 SLAM 前端

一个传统的双目光流前端流程(正常追踪流程)在实现中,尽管后端存在明显的理论差异,但很难直观体验在最。光流法最早,最成熟,缺点也明显(抗光照干扰弱,依赖角点)特征匹配和光流都非常依赖角点,日常生活场景中角点不明显的。除了正常追踪流程以外,还需要考虑初始化、丢失恢复的情况。利用角点附近块的两个特征值大小,可以判断该区是否为角点。如果相机停止,可能给后端留下无用的优化,甚至导致后端问题。因此,对于非关键帧,它的误差会逐渐累积。在光流中,我们通常选择角点来追踪。的关键帧窗口通常有一个很远的和两三个很近的,其他几。

2025-07-14 20:55:06 967

原创 自动驾驶发展环境

汽车引发能源、环境、安全和拥堵问题自动驾驶需政策支持与法规引导,应对社会秩序挑战能减少事故、提高道路通行率、降低能耗中国制定智能汽车目标,出台多部政策 全球多国支持自动驾驶发展。

2025-07-12 09:51:32 699

原创 自动驾驶线控系统与动力电池系统

无人车线控系统包括智能线控系统、电驱动系统和整车控制系统等部分。动力系统 动力系统主要是由动力电池及相关控制系统构成, 为整车的正常运行提供电能源。智能线控系统是一种将操纵意图或操纵指令通过电信号转换并传输到执行机构实现精准控制的系统。

2025-07-11 21:48:56 889

原创 自动驾驶控制系统

控制技术是智能驾驶的关键,旨在环境感知技术的基础之上,根据决策规划出目标轨迹,通过纵向和横向控制系统的配合使汽车能够按照跟踪目标轨迹准确稳定行驶,同时使汽车在行驶过程中能够实现车速调节、车距保持、换道、超车等基本操作。

2025-07-10 21:07:36 1447

原创 自动驾驶决策与规划

决策规划是自动驾驶的核心技术,确保车辆流畅、准确地执行各种驾驶行为。融合多传感信息,根据驾驶需求进行决策,避开障碍物,规划多条安全路径,并选择最优路径作为行驶轨迹。决策规划系统类比于人类大脑,负责处理和分析驾驶过程中的各种信息。决策规划系统需要从环境感知模块获取实时的环境感知信息,包括道路情况、车辆周围障碍物信息、交通信号信息等。根据驾驶需求和环境感知信息,决策规划系统需要进行任务决策,包括路径规划、速度规划、加速度规划等。

2025-07-09 21:04:48 842

原创 自动驾驶传感器的标定与数据融合

集中处理方式的缺点:实时处理传感器数据需要宽带通信,可能引起较高的电磁干扰,需要性能更好的中央ECU,并且增加了系统的电能需求和散热量。GNSS、惯导、视觉、激光雷达、轮速计、高精地图等都是传感器的一种,多种传感器可采集不同形式的数据,用于生成不同类型和不同权重的约束。多传感器融合定位技术,可以规避单一定位方法的缺陷,获得更准确的定位结果。摄像头和激光雷达的数据融合: 传统方法包括Bayes滤波、自适应引导图滤波、传统的形态学滤波等,而基于深度学习的传感器数据融合算法是目前较多采用的方法。

2025-07-08 21:02:39 1381

原创 自动驾驶感知系统

利用摄像头捕捉图像信息,如道路标志、交通信号、车辆、行人等,为自动驾驶系统提供决策依据。通过发射激光束并测量反射时间,计算周围物体的距离和位置,提供高精度信息和三维地图。利用毫米波电磁波检测短距离障碍物,测量位置和速度,对自动驾驶系统提供关键感知信息。利用超声波进行近距离感知,检测车辆周围近距离障碍物,如停车位上的车辆或行人,提供精确感知信息。利用卫星信号提供车辆位置和速度信息,具有全球覆盖、高精度、高速度等优点。但在建筑物内部或隧道等区域可能受到信号干扰或阻挡,导致定位不准确。

2025-07-08 20:50:02 775

原创 自动驾驶基本结构与组成

自动驾驶技术包括环境感知、决策规划和车辆控制三大部分。车联网系统定义车联网系统是指通过无线通信技术、计算机技术、网络传输和控制技术,对无人车实现实时的、自动化的、高度集中控制的无人车运行系统。2021年3月,国务院发布《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》,提出了“积极稳妥发展车联网”、“在智能交通、智慧物流、智慧能源等重点领域开展试点示范”等任务目标,强化了车联网的战略地位。车联网市场范畴车联网系统硬件组成。

2025-07-07 20:18:36 769

原创 自动驾驶基本概念

环境感知与导航定位是自动驾驶的核心技术,这一层的主要功能和目的是利用激光、毫米波、超声波雷达、摄像头等车载传感器和通过车联网获取的多源数据,为车辆提供规划决策所需的必要条件。环境感知是无人驾驶的重要组成部分。通过传感器,采集周边和自身信息,实时发送给处理器,识别周边的车辆、障碍物、行人、可行使区域和交通规则等各种路况信息,确保自动驾驶汽车对环境的理解和把握。智能网联就是指车联网与单车智能的有机联合,在单车智能的技术上融合现代通信与网络技术,实现车与车、车与人、车与路、车与后台等之间的信息交互共享。

2025-07-06 09:04:08 1082

原创 C#程序入门

为了对类进行封装,类的字段通常被设计为私有的(private),那么为了能在类的外部有限地访问这些私有字段,C#引入了属性的概念,属性类似于字段,他们的区别:属性不存储数据,而字段存储数据。例如,在 for、while、方法或类似语句中声明变量,就是局部变量了,它们的作用域就是该语句控制的大括号封闭的范围内。默认情况下所有的数据类型都是非空类型(Non-Null),声明的变量都是不能接收空值(null)的, 但是有时变量确实有可能为空值,因此C#声明变量时,还可以指定可控类型(Nullable)

2025-07-05 10:53:00 756

原创 Blob分析及形态学分析

–––  WB1B2max(WB1WB2。

2025-07-04 21:53:44 584

原创 讲基于优化的 IMU 与视觉信息融合

忽略泰勒展开的高阶项,损失函数变成了二次函数,可以轻易得到如。这样损失函数就近似成了一个二次函数,并且如果雅克比是满秩的,分别是机体状态量,路标在滑动窗口里的起始时刻。是残差函数,比如测量值和预测值之间的差,且有。通常对于状态量之间的递推关系是非线性的方程如。机体坐标系中的加速度和角速度的偏置量估计。其中,待估计的状态量为特征点的三维空间坐标。机体的在惯性坐标系中的位置,速度,姿态,反之,如果是比较小的正数,则增大阻尼。如果是正定矩阵,即它的特征值都大于。如果是负定矩阵,即它的特征值都小于。

2025-07-03 21:31:52 827

原创 毫米波雷达 – 深度学习

Max-Pooling将Chirp压缩到1维,得到Range-Azimuth特征图;包括ADC数据,RAD数据,点云数据等,为不同层次的算法研究和实际应用提供支持。一般来说,至少要有超过10万帧的不同场景,不同天气条件下采集的数据。LSTM的输入为来自连续8帧的34维特征向量,需要tracker的辅助。包括同步的图像,激光雷达等数据,用来进行多传感器融合的研究。这个数据库场景单一,物体大部分是移动的车辆,因此难度相对较低。6个类别:轿车,公交车,自行车,行人,一组行人,垃圾桶。

2025-07-02 20:07:28 999

原创 4D 毫米波雷达

4D 指的是距离(Range),水平角度(Azimuth),俯仰角度(Elevation)和速度(Doppler)。一般来说,4D 毫米波雷达的角度分辨率相对较高,因此也经常被称为 4D 成像雷达。所以说 4D 毫米波雷达的两个主要特点是:1)可以测量高度的信息;2)角度分辨率较高。为了更好的理解这两点,首先需要了解FMCW 雷达角度分辨率的依赖因素,以及为了增加角度分辨率所采用的 MIMO 机制。1. FMCW 雷达的角度分辨率想要测量目标的方位角,至少需要两个接收天线(RX)。

2025-07-01 21:12:05 970

原创 毫米波雷达–传统方法

DBSCAN是基于密度的聚类方法,对样本分布的适应能力比K-Means更好。原理:目标相对多个接收天线的距离不同,这会导致距离FFT峰值的相位变化。2. 提取目标的特征,包括统计特征(比如点位置的均值,方差等)因此,频率差也是固定的,也就是说IF是一个频率恒定的单音信号。个频谱的峰值相同,但相位不同,包含来自多个目标的相位成分。来自三个目标的RX接收信号,每个信号有不同的延时,延时。不同的RX接收信号转化为多个单音信号,每个信号的频率差。混频器输出的是多个单音信号的叠加。对该信号进行FFT操。

2025-06-30 20:53:36 379

原创 激光雷达点云 - 物体检测

PointNet++需要将点集特征映射回原始点云(Feature Propagation),因为聚类生成的点集无法很好的覆盖所有物体。点视图和俯视图方向的改进:Point R-CNN,3D-SSD,SECOND,PIXOR等。用聚类的方式来产生多个候选点集,每个候选点集采用PointNet来提取点的特征。特征: PointNet提取点特征(点视图),然后进行Voxel量化(俯视图)PointNet++提取点特征,同时进行前景分割,以区分物体点和背景点。

2025-06-29 10:09:09 695

三维重建 python程序

ai

2025-07-20

匹配内点对 python

ai

2025-07-20

三维重建 database python

ai

2025-07-20

map to rgb matlab 程序

map to rgb matlab 程序

2025-07-19

camera python

ai

2025-07-19

clang format code python

ai

2025-07-19

export inlier python

cursor

2025-07-18

geography lib python

卓晴

2025-07-18

geography lib python

cursor

2025-07-18

geography lib python

cursor

2025-07-18

geography lib python

cursor

2025-07-18

gps factor example

python爬虫

2025-07-17

time of arrival example python

python爬虫

2025-07-17

gtsam smoother example python

python爬虫

2025-07-17

【DevOps领域】DevOps落地实施流程及CI/CD代码示例:涵盖自动化部署与监控体系建设

内容概要:本文档详细介绍了DevOps落地实施的全流程方案,涵盖文化变革、流程优化、工具链搭建三个主要方面。文化上倡导打破部门壁垒并推行自动化理念;流程方面采用Git Flow分支策略和CI/CD流水线,配合蓝绿部署或金丝雀发布降低风险;工具链部分展示了从GitLab代码库到Jenkins/GitLab CI,再到SonarQube扫描、K8s集群部署以及Prometheus监控的具体链路。同时提供了.gitlab-ci.yml完整示例,包括构建、测试、部署三个阶段的关键配置如artifacts、environment和when:manual等。最后给出实施建议,强调渐进式推进、定期复盘以及完整的监控和安全集成体系。; 适合人群:从事软件开发、运维工作的技术人员,尤其是有一定经验并希望了解或正在尝试DevOps转型的企业和个人。; 使用场景及目标:①希望了解如何将DevOps理念具体落地的企业和个人;②需要掌握完整的CI/CD流水线配置方法的技术人员;③正在寻找优化现有开发运维流程解决方案的团队。; 阅读建议:此文档不仅提供了理论指导,还有实际的代码示例,因此读者应该结合自身项目情况进行对比学习,尤其要注意各个工具之间的衔接关系,在实践中不断调整优化自己的DevOps流程。

2025-07-16

深度学习三维重建python

python

2025-07-16

euroc真值数据 gd

euroc真值数据 gd

2025-07-16

update version python

python

2025-07-16

make docs python

python

2025-07-16

mapping ros2 launch

python

2025-07-16

【数据库技术】SQL语句详解与高可用架构设计:分库分表及中间件使用提升系统性能与稳定性

内容概要:本文档主要涵盖SQL核心语法、分库分表策略、中间件使用以及高可用架构的设计与实现。首先介绍SQL的基本操作,包括创建带有约束条件的表、插入数据、基于时间戳的查询等,强调了主键自增、非空约束、格式校验的重要性。接着深入到进阶查询,如聚合统计时`GROUP BY`与`HAVING`的区别。分库分表部分详细讲解了水平分库、水平分表及垂直拆分的概念,并提供了ShardingSphere配置实例,展示如何利用中间件简化分片逻辑。高可用架构方面,探讨了主从复制、MHA+Keepalived自动故障切换等技术手段来保证系统的稳定性和可靠性。最后讨论了性能优化的方法,如索引优化、查询优化和缓存分层。 适用人群:具有一定数据库基础知识,从事后端开发或运维工作的技术人员。 使用场景及目标:①掌握SQL语句的编写技巧,提高数据操作效率;②理解并能够实施分库分表策略,解决单库性能瓶颈;③学习使用ShardingSphere等中间件工具,降低系统复杂度;④构建高可用架构,确保服务连续性和数据一致性;⑤运用性能优化策略,提升数据库的整体性能。 阅读建议:本资料适合希望深入了解数据库管理和优化的开发者阅读,在学习过程中应结合实际项目需求进行实践操作,同时关注最新技术发展趋势。

2025-08-22

【操作系统开发】Windows CE系统优化与实战项目解析:内存管理、调试技巧及应用开发经验分享了Windows CE操作

内容概要:本文档详细介绍了Windows CE系统的优化技巧、实战项目解析以及开发工具链配置。在系统优化方面,涵盖了内存管理策略(如虚拟内存分页文件设置、动态内存分配与释放)、调试效率提升(如WinDbg中设置硬件断点、分析崩溃日志)和系统裁剪与加速(如移除未使用组件、启用预取功能)。实战项目部分,通过工业控制HMI开发和车载娱乐系统移植两个案例,展示了关键技术的应用(如多线程GUI、线程同步、界面绘制优化)和性能优化措施(如DirectFB替代GDI、适配不同硬件和分辨率)。最后,开发工具链配置章节提供了Visual Studio、Platform Builder和WinDbg的具体推荐版本及关键配置。; 适合人群:对嵌入式系统开发有兴趣的开发者,特别是那些需要深入了解Windows CE系统优化和应用开发的技术人员。; 使用场景及目标:①学习如何优化Windows CE系统的内存管理和调试效率;②掌握工业控制和车载娱乐系统等实际项目的开发技术;③了解并配置合适的开发工具链,提高开发效率和项目质量。; 阅读建议:读者应结合自身项目需求,重点关注系统优化技巧和实战项目中的关键技术点,并根据提供的工具链配置建议进行实践操作,以加深理解和提高技能。

2025-08-22

Java编程语言进阶攻略与实战项目

内容概要:本文档全面覆盖了Java编程语言从基础到高级的核心知识点与实战项目。首先深入解析Java核心技术,包括并发编程的java.util.concurrent包组件(线程池、原子类、锁机制)以及JVM调优(内存模型、垃圾回收算法),并提供实战案例如高并发秒杀系统的库存同步扣减和使用jvisualvm分析内存泄漏。其次介绍企业级框架实战,涵盖Spring生态进阶(Spring Boot 3.x新特性)和数据库优化(MySQL索引优化与分库分表),通过电商平台开发和百万级订单表分片策略设计加深理解。再次探讨前沿技术整合,涉及云原生开发(Docker+Kubernetes部署Java应用)和AI工程化(集成TensorFlow Java API实现图像分类)。最后列出多个实战项目,如即时通讯系统、大数据风控平台、低代码平台等,每个项目都明确了技术栈和能力目标。; 适合人群:有一定Java基础,希望提升技术水平或转向企业级开发的程序员。; 使用场景及目标:①深入理解Java核心技术,掌握并发编程和JVM调优技巧;②熟悉Spring生态和数据库优化,能进行企业级应用开发;③了解云原生和AI工程化,拓展技术视野;④通过实战项目积累经验,提升解决实际问题的能力。; 阅读建议:此文档内容丰富,知识点密集,建议按章节顺序逐步学习,理论结合实践,同时参考提供的学习资源,以达到最佳学习效果。

2025-08-22

unity 3dball

unity 3dball

2025-08-22

容器技术Docker镜像构建与编排、K8s集群部署全流程实战:提升部署效率与资源利用率的最佳实践案例

内容概要:本文详细介绍了Docker全链路部署的实战案例,包括镜像构建、Compose编排和K8s集群部署三个核心环节。镜像构建部分展示了Spring Boot应用的基础镜像构建和多阶段构建优化方法,其中多阶段构建能减少最终镜像体积约60%。Compose编排部分提供了典型Web服务与微服务集群的编排实例,支持服务发现和负载均衡。K8s集群部署部分讲解了Spring Boot应用的部署方式以及生产环境集群配置要点,如高可用设置、资源限制、外部访问配置和自动扩缩容等。最后,文章还分享了CI/CD流水线设计、监控方案(Prometheus、Grafana、AlertManager)和安全建议的最佳实践,方案已在多个生产环境中验证,显著提升了部署效率、资源利用率并缩短了故障恢复时间。 适合人群:具备一定Docker、Kubernetes基础,有容器化部署经验的研发人员、运维人员。 使用场景及目标:①掌握从镜像构建到集群部署的全流程;②学习如何通过多阶段构建优化镜像大小;③理解Compose编排在微服务架构中的应用;④熟悉K8s集群配置要点,确保生产环境的高可用性和稳定性;⑤建立完整的CI/CD流水线,实现自动化部署与监控。 阅读建议:本文内容详实,建议读者结合实际项目需求逐步实践,特别关注镜像优化、集群配置和自动化工具的使用,同时参考提供的具体命令和配置示例进行操作。

2025-08-18

【Git版本控制】分支管理策略、冲突解决及Hooks自动化脚本应用:提升团队协作与代码管理效率的技术指南

内容概要:本文档详细介绍了Git分支管理策略、冲突解决和Hooks自动化脚本的实用技巧。在分支管理方面,文档阐述了主流分支模型,包括主线分支保持稳定可发布状态、开发分支作为集成测试环境、功能分支按需求独立开发、修复分支用于紧急问题处理,并给出了创建、合并、删除分支的操作命令。对于冲突解决,总结了常见的冲突场景,如多人修改同一文件、分支合并时相同位置不同修改、远程仓库与本地版本不一致,以及解决步骤,即查看冲突文件、手动编辑冲突内容、标记已解决文件、完成合并提交。关于Hooks自动化脚本,文档讲解了核心钩子类型(客户端和服务端钩子),典型应用场景(如提交前自动运行测试、推送前验证分支命名规范、部署时自动构建打包),以及配置方法。此外,还提及了一些高级技巧,如变基保持线性历史、合并保留完整历史和版本号规范建议。; 适合人群:具有一定Git基础,参与团队协作开发的程序员或项目管理人员。; 使用场景及目标:①帮助团队制定合理的分支管理策略,提高协作效率;②掌握有效的冲突解决方案,减少开发中的阻碍;③利用Hooks自动化脚本提升代码质量和发布流程的自动化程度。; 阅读建议:读者应结合自身项目的实际情况来理解和应用这些技巧,尤其是分支管理策略的选择和冲突解决流程的规范化建设,同时注意实践中的不断调整优化。

2025-08-18

【Python开发】IntelliJ IDEA配置Python开发环境与调试技巧:环境搭建、调试方法及规范模板设置指南

内容概要:本文档详细介绍了在IntelliJ IDEA中配置Python开发环境的方法,包括安装Python插件、配置Python解释器和创建Python项目。调试技巧方面,涵盖基础调试方法如设置行断点、进入调试模式,高级断点类型如方法断点、条件断点和异常断点,以及使用快捷键控制执行流程和查看变量状态。规范模板设置部分讲解了文件头模板配置,提供了一个示例模板内容,并给出了PEP8规范建议,如缩进使用4个空格、每行代码不超过79个字符等。最后,实用技巧部分介绍了虚拟环境管理、依赖安装和代码辅助等功能。; 适合人群:使用IntelliJ IDEA进行Python开发的初学者或有一定经验的开发者。; 使用场景及目标:①帮助开发者快速搭建Python开发环境;②掌握多种调试技巧,提高开发效率;③遵循PEP8规范,编写高质量代码;④利用实用技巧简化开发流程,如管理虚拟环境、安装依赖和代码导航。; 阅读建议:在阅读过程中,建议读者结合自身开发需求,重点关注环境配置、调试技巧和代码规范部分,并动手实践相关操作,以加深理解和应用。

2025-08-18

rust系统编程,文件系统操作示例

rust系统编程,文件系统操作示例

2025-08-12

面试代码高频题 ,dfs代码

面试代码高频题 ,dfs代码

2025-08-12

ocr识别,停车位检测,直线拟合

ocr识别,停车位检测,直线拟合

2025-08-12

视觉融合 python代码

mspm0g3507

2025-08-06

ceres solver python

mspm0g3507

2025-08-05

nvm to ply python

ai

2025-07-26

【电子设计竞赛】2025年全国大学生电赛实战项目与训练内容:现代电子技术领域竞赛准备指南介绍了202

内容概要:文章介绍了2025年全国大学生电子设计竞赛的相关资源和训练内容。竞赛时间为2025年7月30日8:00至8月2日20:00,分为本科生组和高职高专组,题目涵盖现代电子技术领域,如嵌入式系统、可编程器件等,且强调“理论设计+实际制作”。校赛真题包括电源类(如设计电流跟踪控制DC/DC变换器)和机械类(如波形产生与分析装置)。专项技术训练资源涵盖电源设计(如DC/DC变换器方案)、控制算法与嵌入式开发(如PID调试实践)。拓展实战项目则提供了能源创新案例(如光储直柔系统、绿电空港方案)和工业级应用训练。此外,还提供了官方资料包、校赛题目详解以及PID控制实战教程等资源获取链接。 适合人群:对电子设计竞赛感兴趣或准备参加2025年全国大学生电子设计竞赛的学生和技术爱好者。 使用场景及目标:①了解竞赛规则和要求,熟悉题目类型;②掌握电源设计、控制算法、信号处理等专项技术;③借鉴能源创新案例和工业级应用,提升实战能力。 其他说明:资源获取链接提供了官方资料包、校赛题目详解、PID控制实战教程等,有助于参赛者更好地准备竞赛。

2025-07-24

合并点云文件 python

python

2025-07-23

download python

python

2025-07-23

三维重建 深度学习可视化python

python

2025-07-23

Dify Hackathon python示例代码

Dify Hackathon python示例代码

2025-07-22

Cursor AI编程示例代码python程序

Cursor AI编程示例代码python程序

2025-07-21

扣子COZE AI 编程案例 python程序

扣子COZE AI 编程案例 python程序.py

2025-07-21

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除