原子电离动力学与氢原子电离相关研究
1. 原子连续态响应与条件分析
在时域中,脉冲对原子连续态的响应有着特殊要求。假设$V_{lml}(\epsilon)$的傅里叶变换对应的响应时间$\tau_a$远小于$\tau_L$,这意味着原子连续态对脉冲有非常快速的响应。在不现实的情况下,若$V_{lml}(\epsilon)$为常数,那么$\tau_a = 0$,原子响应变为瞬间响应,脉冲的变化会立即影响电离波包。
对于给定原子,若考虑特定条件,可独立选择场的通量和持续时间。但综合这些条件可得$P_i = \sigma_1(\omega_L)F_0\tau_L \ll 1$,这表明对于固定的$\omega_L$,场强不能太强,以免在一个场周期内发生显著电离。同时,需关注原子响应,特别是$V_{lml}(\epsilon)$矩阵元素。若这些矩阵元素在脉冲带宽$\gamma_L$内变化较大,可能在相互作用时间内,其布居数会违反低布居转移的要求。不过,若脉冲足够长,最终布居数可能仍满足要求。此外,对于束缚态的激发,若束缚态能量$\epsilon_b$落在脉冲带宽$|\epsilon_b - (\epsilon_0 + \omega_L)| < \gamma_L$内,通常需要质疑微扰近似的有效性,并且在检验其有效性时,需同时考虑场强、中心频率和持续时间。
2. 渐近动量基
2.1 渐近动量基的引入
在光电离过程后,探测器会观测到以局域波包形式存在的粒子。基于此,引入渐近动量基,它是哈密顿量和动能项${\hat{h}_0, \hat{K} = \hat{P}^2/2}$的共同基。动量算符$\hat{P}$定义为$\hat{P} = i[\ha