实分析
第二章
2.1 皮亚诺公理
公理2.1 0是一个自然数
公理2.2 如果n是一个自然数,那么n++也是一个自然数
2.3 0不仅跟在任何自然数之后。即n++!=0恒成立
命题2.1.6 4!=0,因为4=3++,故4!=0(2.3)
2.4 对于不同自然数而言,跟在他们之后的数字也是不同的
命题2.1.8 6!=2 假设6=2。那么 5++ =1++,那么5=1(2.4的逆否命题),那么4++=0++,那么4=0,矛盾!
2.5(数学归纳法原理),令p(n)表示自然数n的一个性质
以上是皮亚诺公理
命题2.1.16(序列的递归定义) 假设对任意n,都存在fn:N->N,令c为某个固定的自然数。那么对于任意n,都能够确定唯一的自然数an,使得a0=c且an++=fn(an)
2.2 加法
定义2.2.1 0+m:=m (n++)+m=(n+m)++
引理2.2.2 对任意自然数n,n+0=n恒成立
证:因为0+m=m ,令m=0,那么n=0时成立,假设n+0=n,那么(n++)+ 0=(n + 0)++ = n ++,证毕。
引理2.2.3 对任意自然数n,m,n+(m++)=(n+m)++
证:
推论2.2.3 n++=n+1
证:
命题 2.2.4 任意自然数域上的加法交换律
命题2.2.5 (a+b)+c =a+(b+c)
证:固定a,b
1.c=0,成立
2.原式子成立->(a+b)+c++=a+(b+c++)(2.2)
引理2.2.10 a为一个正自然数,存在唯一的b++=a
证: