遗传算法 求解物流配送中心选址问题 源码+详细注释(Matlab编写) 有两种解决选址问题

遗传算法 求解物流配送中心选址问题
源码+详细注释(Matlab编写)
有两种解决选址问题代码,说明如下:
代码一:免疫算法物流配送中心选址
模型应用场景:
1.配送中心能够配送的总量≥各揽收站需求之和
2.一个配送中心可为多个揽收站配送货物,但一个快递揽收站仅由一个配送中心供应
需求点,需求点容量,配送中心数目可以根据实际随意更改(结果图如图1,2,3,4所示)
代码二:遗传算法配送中心选址
可以修改需求点坐标,需求点的需求量,备选中心坐标,配送中心个数
注:2≤备选中心≤20,需求点中心可以无限个
[new]优化与迭代过程是动态更新的喔[火]有需要的可以直接拿哈
(结果图如图5,6,7,8所示)
代码一经售出不予退换
保证运行 可回答简单问题[托腮]

YID:629717065469920

呆萌可爱小柠檬



遗传算法 求解物流配送中心选址问题

在物流领域中,配送中心的选址问题一直是一个关键且复杂的挑战。为了解决这一问题,我们提供了两种代码解决方案:免疫算法物流配送中心选址和遗传算法配送中心选址。这两种算法均有源码和详细注释,为您提供了完整的实现过程。

首先,我们介绍免疫算法物流配送中心选址。该模型适用于满足以下两个条件的场景:配送中心的总配送能力大于等于各揽收站的需求量之和,以及每个揽收站只能由一个配送中心供应货物。通过改变需求点、需求点容量和配送中心数目,您可以灵活地调整模型来适应不同的实际情况。我们为您提供了结果图1、2、3和4,展示了不同参数设置下的模型运行效果。

其次,我们提供了遗传算法配送中心选址的代码。您可以根据实际情况修改需求点坐标、需求点的需求量、备选中心坐标和配送中心个数。需要注意的是,备选中心个数应在2到20之间,而需求点中心可以无限多。我们为您准备了结果图5、6、7和8,展示了不同参数组合下的优化结果。

在购买代码后,请注意代码一经售出不予退换。我们保证提供的代码能够正常运行,并且可以回答一些简单问题以帮助您理解代码的使用。

总结起来,免疫算法和遗传算法是两种有效的方法来解决物流配送中心选址问题。它们的代码实现详细注释,您可以根据实际需求灵活调整参数。购买代码后,您将获得更多关于优化和迭代过程的动态更新信息。如果您有兴趣,可以直接联系我们购买代码。

希望这两种解决选址问题的代码能为您的物流配送中心选址问题提供帮助![火]

相关的代码,程序地址如下:http://nodep.cn/717065469920.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值