🌮开发平台:jupyter lab
🍖运行环境:python3、TensorFlow2.x
----------------------------------------------- 2022.9.16 测验成功 ----------------------------------------------------------------
1. 时间序列预测:用电量预测 01 数据分析与建模
2. 时间序列预测:用电量预测 02 KNN(K邻近算法)
3. 时间序列预测:用电量预测 03 Linear(多元线性回归算法 & 数据未标准化)
4.时间序列预测:用电量预测 04 Std_Linear(多元线性回归算法 & 数据标准化)
5. 时间序列预测:用电量预测 05 BP神经网络
6.时间序列预测:用电量预测 06 长短期记忆网络LSTM
7. 时间序列预测:用电量预测 07 灰色预测算法
说明:根据上述列表中 1.时间序列预测:用电量预测 01 数据分析与建模 进行数据整理,得到household_power_consumption_days.csv文件,部分数据展示如下:
时间序列预测:用电量预测 05 BP神经网络
1.导包
### 线性回归
## 测试数据:训练数据和测试数据比例分别占0.9、0.1
## BP神经网络
import tensorflow as tf
from tensorflow.keras.preprocessing import sequence
from tensorflow.keras.models import Sequential
from tensorflow.keras.datasets import boston_housing
from tensorflow.keras.layers import Dense, Dropout
# from tensorflow.keras.utils import multi_gpu_model
from tensorflow.keras import regularizers # 正则化
import matplotlib.pyplot as plt
import numpy as np
from sklearn.preprocessing import MinMaxScaler
import pandas as pd
import warnings
warnings.filterwarnings('ignore')
2. 数据获取
2.1 数据划分
### 2.1 将日期变作index
data = pd.read_csv('../1_pusu/household_power_consumption_days.csv', header=0, infer_datetime_format=True, parse_dates=['datetime'], index_col=['datetime'])
### 2.2 查看data的状态
data.shape ##(14