时间序列预测:用电量预测 06 长短期记忆网络LSTM

🌮开发平台:jupyter lab

🍖运行环境:python3、TensorFlow2.x

----------------------------------------------- 2022.9.16 测验成功 ----------------------------------------------------------------
1. 时间序列预测:用电量预测 01 数据分析与建模
2. 时间序列预测:用电量预测 02 KNN(K邻近算法)
3. 时间序列预测:用电量预测 03 Linear(多元线性回归算法 & 数据未标准化)
4.时间序列预测:用电量预测 04 Std_Linear(多元线性回归算法 & 数据标准化)
5. 时间序列预测:用电量预测 05 BP神经网络
6.时间序列预测:用电量预测 06 长短期记忆网络LSTM
7. 时间序列预测:用电量预测 07 灰色预测算法

说明:根据上述列表中 1.时间序列预测:用电量预测 01 数据分析与建模 进行数据整理,得到household_power_consumption_days.csv文件,部分数据展示如下:

在这里插入图片描述

1.导包

## LSTM 具有标准化和反标准化
## 测试数据:训练数据、测试数据分别占比0.8,0.2
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import os
import datetime

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import r2_score

import tensorflow as tf
from tensorflow.keras import Sequential, layers, utils, losses
from tensorflow.keras.callbacks import ModelCheckpoint, TensorBoard

import warnings
warnings.filterwarnings('ignore')

2. 数据

2.1 数据获取

### 2.1 将日期变作index
data = pd.read_csv('../1_Linear/household_power_consumption_days.csv', header=0, infer_datetime_format=True, parse_dates=['datetime'], index_col=['datetime'])
data.head()

### 2.2 查看data的关键字
dataset = data.copy()
data.keys()  
## out:Index(['Global_active_power', 'Global_reactive_power', 'Voltage','Global_intensity', 'Sub_metering_1', 'Sub_metering_2','Sub_metering_3', 'sub_metering_4'],dtype='object')

2.2 数据统一标准化

# 分别对字段'Global_active_power', 'Global_reactive_power', 'Voltage','Global_intensity'进行归一化
columns = ['Global_active_power', 'Global_reactive_power', 'Voltage',
       'Global_intensity','Sub_metering_1', 'Sub_metering_2',
       'Sub_metering_3','sub_metering_4']

for col in columns:
    scaler = MinMaxScaler()
    dataset[col] = scaler.fit_transform(dataset[col].values.reshape(-1,1))

2.3 获取自变量和因变量

# 特征数据集
X = dataset.drop(columns=['sub_metering_4'], axis=1) 
# 标签数据集
y = dataset['sub_metering_4']

X.shape,y.shape  #(1442, 7), (1442,)

2.4 训练集、测试集划分

# shuffle=False 不能打乱 因为是时序预测
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, shuffle=False, random_state=111)

X_train.shape,X_test.shape,X_test.shape,y_test.shape
# (1153, 7), (289, 7), (289, 7), (289, 1)

2.5 数据时序划分

## 1.按指定时间数划分数据
# seq_len=1 代表1个数据为一组
def create_dataset(X, y):
    features = []
    targets = []
    
    for i in range(0, len(X), 1):
        data = X.iloc[i] # 序列数据
        data_x = []
        data_x.append(data)
        label = y.iloc[i] # 标签数据
        # 保存到features和labels
        features.append(data_x)
        targets.append(label)
    
    # 返回
    return np.array(features), np.array(targets)

## 2.按照指定时间数划分训练集、测试集
# ① 构造训练特征数据集
train_dataset, train_labels = create_dataset(X_train, y_train)
# ② 构造测试特征数据集
test_dataset, test_labels = create_dataset(X_test, y_test)
# 1153 每个滑动窗口有1条数据 每条数据有7个特征
train_dataset.shape,train_labels.shape  #out:(1153, 10 7), (1153,)
test_dataset.shape,test_labels.shape #out:(289, 1, 7), (289,)

2.6 将训练集、测试集 自变量和因变量 捆绑在一起

def create_batch_dataset(X, y, train=True, buffer_size=1000, batch_size=128):
    batch_data = tf.data.Dataset.from_tensor_slices((tf.constant(X), tf.constant(y))) # 数据封装,tensor类型
    if train: # 训练集
        return batch_data.cache().shuffle(buffer_size).batch(batch_size)
    else: # 测试集
        return batch_data.batch(batch_size)
# 训练批数据
train_batch_dataset = create_batch_dataset(train_dataset, train_labels)
# 测试批数据
test_batch_dataset = create_batch_dataset(test_dataset, test_labels, train=False)

3.模型

3.1 模型构建,并训练

# 模型搭建--版本1
model = Sequential([
    layers.LSTM(units=256, input_shape=train_dataset.shape[-2:], return_sequences=True),
    layers.Dropout(0.4),
    layers.LSTM(units=256, return_sequences=True),
    layers.Dropout(0.3),
    layers.LSTM(units=128, return_sequences=True),
    layers.LSTM(units=32), 
    layers.Dense(1)  ## 一个输出
])


optimizer = tf.keras.optimizers.Adam(learning_rate=0.001)
# 模型编译
model.compile(optimizer=optimizer,loss='mse')

checkpoint_file = "best_model.hdf5"

checkpoint_callback = ModelCheckpoint(filepath=checkpoint_file, 
                                      monitor='loss',
                                      mode='min',
                                      save_best_only=True,
                                      save_weights_only=True)
# 模型训练
history = model.fit(train_batch_dataset,
                    epochs=50,
                    validation_data=test_batch_dataset,
                    callbacks=[checkpoint_callback])

在这里插入图片描述

3.2 模型损失loss和val_loss对比图

# 显示训练结果
plt.figure(figsize=(16,8))
plt.plot(history.history['loss'], label='train loss')
plt.plot(history.history['val_loss'], label='val loss')
plt.legend(loc='best')
plt.show()

在这里插入图片描述

3.3 数据预测

## 预测
test_preds = model.predict(test_dataset, verbose=1)

## 计算r2值
score = r2_score(test_labels, test_preds)
print("r^2 值为: ", score)   # out: r^2 值为:  0.9768187762301508

len(test_labels),len(test_preds) # out: (289, 289)

4.数据展示

4.1 以可视化图的形式 对比 测试集原始目标数据和预测目标数据(未反标准化)

# 绘制 预测与真值结果
plt.figure(figsize=(16,8))
plt.plot(test_labels[:300], label="True value")
plt.plot(test_preds[:300], label="Predicte value")
plt.legend(loc='best')
plt.show()

在这里插入图片描述

4.2 以可视化图的形式对比测试集原始目标数据和预测目标数据(反标准化后的数据)

### 1.转换格式,用于反标准化后 真实值和预测值对比图
y_test = pd.DataFrame(y_test)

# 2.test_preds,y_test反标准化
# 通过原有数据训练,实现反标准化
## fit训练的是原本未归一化的y_test数据
scaler.fit(data[['sub_metering_4']])
y_new = scaler.inverse_transform(y_test)
y_new_pred = scaler.inverse_transform(test_preds)

len(y_new),len(y_new_pred)  #out:(289, 289)

# 3.绘制 预测与真值结果
plt.figure(figsize=(16,8))
plt.plot(y_new[:300], label="True value")
plt.plot(y_new_pred[:300], label="Predicte value")
plt.legend(loc='best')
plt.show()

在这里插入图片描述

  • 2
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值