推荐系统
D_pens
这个作者很懒,什么都没留下…
展开
-
Off-policy learning in Two-stage Recommender System学习摘录
Abstract推荐系统对可伸缩性的需求,因为在推荐系统中,数百万的条目要在数毫秒内匹配数十亿计的用户。两阶段系统具有良好的可伸缩性,第一阶段是有效的候选项生成模型,第二阶段是更强大的排名模型。论文提出背景用于构建候选项生成模型和排名模型的数据是来自用户对之前系统推荐的条目的反馈,这带来了偏差。近年来,越来越多的人开始关注这一问题。然而,大部分的工作要么是假设推荐系统是一个单阶段的系统,要么是只研究如何将off-policy修正应用到系统的候选生成阶段,而没有明确考虑这两个阶段之间的交互作用。该论原创 2020-08-21 14:57:50 · 977 阅读 · 0 评论 -
Understanding User Behavior For Document Recommendation学习摘要
introduction论文提出背景近年来,关于可解释推荐的话题受到越来越多的关注,人们也提出了多种方法来解释推荐结果。但是,很少有工作专门关注用户与解释的交互以及它们在文档推荐中的有效性。研究解释对用户行为的影响,对于理解用户如何理解解释,识别更好的解释设计,提高整体用户体验具有重要意义。文档推荐与其他推荐的区别文档推荐与其他推荐(如电影和商品)有着重要的区别。人们通常对文档非常了解(例如,文档的类型、作者以及最后一次与文档交互的时间),他们通常有一个明确的目标,即在访问文档平台时查找或重新查找特原创 2020-08-15 10:18:32 · 443 阅读 · 0 评论