GCN为什么是低通滤波器?

信号系统的卷积

时域卷积:
y ( t ) = x ( t ) ∗ h ( t ) y(t) = x(t) * h(t) y(t)=x(t)h(t)
转化到频域:
Y ( ω ) = X ( ω ) H ( ω ) Y(\omega) = X(\omega)H(\omega) Y(ω)=X(ω)H(ω)
频率响应函数:
H ( ω ) = Y ( ω ) X ( ω ) H(\omega) = \frac{Y(\omega)}{X(\omega)} H(ω)=X(ω)Y(ω)
其中 ω \omega ω为频率,因此 H ( ω ) H(\omega) H(ω) ω \omega ω的范围就确定了能够通过该频率响应函数的信号。比如,当 ω ∈ [ − 1 , 1 ] \omega\in[-1,1] ω[1,1] H ( ω ) H(\omega) H(ω)如下图时:
在这里插入图片描述
该频率响应函数就仅能通过频率在[-1,1]的信号。

图卷积

在说图卷积之前,我们要了解这些。详情请见图卷积神经网络理论基础
在这里插入图片描述

laplace矩阵:
L = D − A L = D - A L=DA

L = U Λ U T L = U \Lambda U^T L=UΛUT

Λ \Lambda Λ是L的特征值矩阵,即

Λ = [ λ 1 ⋱ λ n ] \Lambda = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix} Λ=λ1λn

卷积公式:

( f ∗ g ) G = U g θ U T f = U g θ ( Λ ) U T f = U [ g ^ ( λ 1 ) ⋱ g ^ ( λ n ) ] U T f (f*g)_G = Ug_\theta U^Tf = Ug_\theta(\Lambda)U^Tf = U \begin{bmatrix} \widehat{g}(\lambda_1) & & \\ & \ddots & \\ & & \widehat{g}(\lambda_n) \end{bmatrix} U^Tf (fg)G=UgθUTf=Ugθ(Λ)UTf=Ug (λ1)g (λn)UTf

因为在图卷积中特征值相当于频率,因此频率响应函数 g θ g_\theta gθ能通过的频率取决于 L L L的特征值范围。又 L L L λ ∈ [ 0 , 2 ] \lambda \in[0,2] λ[0,2](证明见图的拉普拉斯矩阵的特征值范围的一个估计或者谱图论(这本书没找到电子版))。

ChebNet

ChebNet引入了切比雪夫多项式对 g θ g_\theta gθ进行拟合。
g θ ( Λ ) ≈ = ∑ k = 0 K θ ′ k T k ( Λ ~ ) g_\theta(\Lambda) \approx = \sum_{k=0}^K \theta\prime_k T_k(\tilde{\Lambda}) gθ(Λ)=k=0KθkTk(Λ~)

其中 Λ ~ = 2 Λ λ m a x − I \tilde{\Lambda} = 2 \frac{\Lambda}{\lambda_{max}} -I Λ~=2λmaxΛI, λ m a x ≈ 2 \lambda_{max} \approx 2 λmax2,通过这个操作,来缩放特征值。

GCN

在GCN中取 λ m a x = 2 \lambda_{max} = 2 λmax=2 K = 1 K = 1 K=1,得 Λ ~ = Λ − I \tilde{\Lambda} = \Lambda -I Λ~=ΛI,特征值大小缩放到 [ − 1 , 1 ] [-1, 1] [1,1]
因此,频率响应函数 g θ g_\theta gθ只能通过 λ ∈ [ − 1 , 1 ] \lambda \in[-1,1] λ[1,1]的信号,所以GCN是一个低通滤波器。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值