LRU Cache
Medium
Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and put.
get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.
put(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.
The cache is initialized with a positive capacity.
Follow up:
Could you do both operations in O(1) time complexity?
Example:
LRUCache cache = new LRUCache( 2 /* capacity */ );
cache.put(1, 1);
cache.put(2, 2);
cache.get(1); // returns 1
cache.put(3, 3); // evicts key 2
cache.get(2); // returns -1 (not found)
cache.put(4, 4); // evicts key 1
cache.get(1); // returns -1 (not found)
cache.get(3); // returns 3
cache.get(4); // returns 4
题意
实现经典的LRU缓存类,要求存/取数据的put/get方法都是O(1)的
思路
LRU的英文全称是least recent used,即“最近最久未使用”。一个自然的想法是维护一个双向链表,每次更新或者访问一个key,就把这个key对应的链表节点放到链表头;如果达到缓存长度上限需要淘汰节点,则删除链表尾的元素。这两样操作都是O(1),但问题在于链表的查询操作是O(n),光有双向链表不能保证get方法O(1). 为此另一个很自然的想法是引入哈希表,键为key,值为对应的双向链表的节点,这样就可以实现通过key的O(1)复杂度的查找。
具体实现上有一个细节需要注意,由于引入了哈希表,因此淘汰节点时不仅要删除双向链表的尾节点,还需要删除哈希表中相应节点。为了实现O(1)的删除,需要知道被删除节点在哈希表中的键值,因此双向链表节点类中需要添加一个字段表示链表节点对应的key值。
代码
class LRUCache {
// list node of dual linked list
class ListNode {
public int key, val;
public ListNode pre, next;
public ListNode(int key, int val, ListNode pre, ListNode next) {
this.key = key;
this.val = val;
this.pre = pre;
this.next = next;
}
}
private int capacity;
private int volumn;
private HashMap<Integer, ListNode> map;
private ListNode head; // dummy head of dual linked list
private ListNode tail; // dummy tail of dual linked list
public LRUCache(int capacity) {
this.capacity = capacity;
volumn = 0;
map = new HashMap<Integer, ListNode>();
head = new ListNode(0, 0, null, null);
tail = new ListNode(0, 0, head, null);
head.next = tail;
}
public int get(int key) {
ListNode cur = map.get(key);
if (cur == null) {
return -1;
}
cur.pre.next = cur.next;
cur.next.pre = cur.pre;
cur.pre = head;
head.next.pre = cur;
cur.next = head.next;
head.next = cur;
// printList(head, tail);
return cur.val;
}
public void put(int key, int value) {
if (map.containsKey(key)) {
ListNode cur = map.get(key);
cur.val = value;
cur.pre.next = cur.next;
cur.next.pre = cur.pre;
cur.pre = head;
head.next.pre = cur;
cur.next = head.next;
head.next = cur;
return;
}
ListNode cur = new ListNode(key, value, head, head.next);
map.put(key, cur);
head.next.pre = cur;
head.next = cur;
volumn++;
if (volumn > capacity) {
map.remove(tail.pre.key);
tail.pre.pre.next = tail;
tail.pre = tail.pre.pre;
volumn--;
}
// printList(head, tail);
}
// for debug
private void printList(ListNode head, ListNode tail) {
head = head.next;
while (head != tail) {
System.out.print(head.val + ", ");
head = head.next;
}
System.out.println();
}
}
/**
* Your LRUCache object will be instantiated and called as such:
* LRUCache obj = new LRUCache(capacity);
* int param_1 = obj.get(key);
* obj.put(key,value);
*/