OJ密码岛 1243.谢尔宾斯基三角形

本博客介绍了谢尔宾斯基三角形这一分形概念,并给出了一种利用递归方法生成n阶谢尔宾斯基三角形的解决方案。内容包括问题描述、输入输出格式以及样例展示,特别指出当n小于10时,可通过递归算法轻松实现。
摘要由CSDN通过智能技术生成

题目描述

谢尔宾斯基三角形是一种分形,正常情况它长这样的:

我们定义1阶的三角形为:

   *    
  * *   
 * * *  
* * * *

2阶的三角形为:

       *        
      * *       
     * * *      
    * * * *     
   *       *    
  * *     * *   
 * * *   * * *  
* * * * * * * *

现在输入n,请你打印出n阶的三角形

输入格式

输入一个整数n(n<10)。

输出格式

打印出n阶的三角形。

样例

输入样例复制

2

输出样例复制

       *        
      * *       
     * * *      
    * * * *     
   *       *    
  * *     * *   
 * * *   * * *  
* * * * * * * *

数据范围与提示

1 <= n < 10

这道题其实不难,只需用递归即可

代码如下:

#include<bits/stdc++.h>
using namespace std;
int h[20]={0,4};
int l[20]={0,7};

char map1[1060][2080];

void print(int x,int y){
	map1[x][y+3]='*';
	map1[x+1][y+2]=map1[x+1]
oj(Online Judge,在线编程平台)上,求解三角形面积的问题通常是一个基础的数学计算题目,涉及到程序设计中的基本算法。如果你需要编写一个程序来解决这个问题,你可以按照以下步骤: 1. **输入**:首先,你需要从用户或标准输入接收三个边长值,这通常是a、b、c三条边,其中任意两边之和大于第三边,满足三角形的条件。 ```python a = float(input("请输入三角形第一条边长:")) b = float(input("请输入三角形第二条边长:")) c = float(input("请输入三角形第三条边长:")) ``` 2. **判断是否构成三角形**:检查输入的三边能否构成有效的三角形,如果不是,则返回错误信息。 ```python if a + b > c and a + c > b and b + c > a: # 继续计算 else: print("无法构成三角形") exit() ``` 3. **计算面积**:对于直角三角形,可以使用海伦公式(Heron's formula)或者两个较小边相乘除以2来求面积;对于非直角三角形,可以使用毕达哥拉斯定理(勾股定理)来找出斜边,然后再用面积公式A = (p * p - a * a - b * b) / 4(其中p为半周长,即(p = (a+b+c)/2)。 ```python # 使用海伦公式 s = (a + b + c) / 2 area = (s*(s-a)*(s-b)*(s-c)) ** 0.5 # 或者使用毕氏定理 import math if math.sqrt(a**2 + b**2) == c: # 判断是否为直角三角形 area = 0.5 * a * b else: area = 0.5 * a * c # 斜边为c ``` 4. **输出结果**:将计算出的面积打印出来。 ```python print("三角形的面积是:", round(area, 2)) ```
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值