哈希(hashtable)表,查找方式的颠覆者!

数据结构 专栏收录该内容
11 篇文章 1 订阅


前言

这是这个系列的最后一篇文章,与哈希表(Hash table)结缘也是在分析JDK1.8以后HashMap源码的时候,因为HashMap一共用到了三种数据结构——链表、红黑树、哈希表。之后为了学习红黑树,又把而二叉树、二叉排序树(搜索树)复习了一遍,并促成了这个系列的文章。

一、比较查找方式

不论是数组、链表还是二叉树、二叉排序树(搜索树)、红黑树,我们要找到其中特定的一个元素,方法只有一个那就是挨个比较直到找到为止,这就造成了查找的时间复杂度总是与N有关系。

数组链表二叉树二叉排序树红黑树
查找O(N)O(N)O(N)O(log N)~O(N)O(log N)

数组:假设数组中有N个元素,我们要找到其中一个特定的元素,通常要进过N/2次比较,所以时间复杂度上来说还是O(N)。如果数组是有序数组的话,相当于折半查找,此时的时间复杂度是O(log N)。

链表:同理与数组,假设有N个元素,要找到其中一个特定的元素,时间复杂度还是O(N)。

二叉树:注意是二叉树,左、右节点之间没有大小关系,实在不明白,可以看看这篇文章二叉树(从建树、遍历到存储)Java。此时要从N个节点中找到特定的节点,时间复杂度是O(N)。

二叉排序树:此时父节点与左、右子节点之间就有大小关系了。在节点分布均匀的情况下相当于折半查找,所以时间复杂度是O(log N),一般情况下时间复杂度在O(N)到O(log N)之间。

红黑树:虽然红黑树在插入、删除操作上很是麻烦,但是对于查找操作跟二叉排序树是一模一样的,因为红黑树不过是加了平衡算法的二叉排序树而已,二叉排序树最基本的父节点与左、右子节点之间的大小关系肯定是满足的,所以时间复杂度是O(log N)。

只看表达式的可能感觉不强烈,那我们假设N=1000000。

数组链表二叉树二叉排序树红黑树
查找10000001000000100000020~100000020

注意:有人可能会说,二叉排序树这个跨度也太大了吧,嗯嗯,这也是为什么要用红黑树的原因。

二、查找方式颠覆者

看了比较查找方式的时间复杂度之后,哈希查找方式绝对称得上是颠覆者,因为他彻底跟N说拜拜~~~~ 使时间复杂度降到O(1)。

我们以存储英语单词dog、cat、pig、sheep为例看看哈希表的工作机制。

数据结构

哈希表听上去没上面那些数据结构那么直白,它其实是以数组为基础的。那我们就新建一个长度为58的字符串数组。

存入

(1)计算下标:我们以a对应1,z对应26的编码方式,计算上面四个单词的下标,分别为
dog = 4 + 15 + 7 = 26
cat = 3 + 1 + 20 = 24
sheet = 19 + 8 + 5 + 5 + 20 = 57
pig = 16 + 9 + 7 = 32

(2)存储:之后我们就把单词dog存入到数组下标为26的单元中,其他三个单词同理分别存储到数组下标为24、32、57的单元中。

取出

(1)计算下标:如果我们要取出cat,那就再用上面的算法,计算出在数组下标为24的单元中,这样就可以得到单词cat了。

鸡肋?

看了取出操作可能会有人有这样的疑问,既然我都知道cat了,还计算cat在数组中的存储下标,再取出cat?这什么操作????
在这里插入图片描述

既然说到这里那就再提出两个问题,(1)为什么HashSet没有get方法?;(2)为什么HashMap有get方法?

这两种集合类都是基于hash表的。(1)HashSet没有取出指定元素的方法,就是因为它只有存入的操作,不会有取出的操作。不论你要取set集合中的哪个元素,你都必须把这个元素给我,我计算下标把这个元素找到,再返回给你。既然我都知道这个元素了,我还有你给我干嘛?所以HashSet中不会有取出指定元素的方法,只能整体遍历。

(2)HashMap则不同,它存储的是键值对。在存入的时候根据计算得到存储下标,存入键值对;取出的时候把给我,我计算下标找到对应的位置,把返回给你。

三、改良hash函数

什么是哈希函数?
就是上面我们用来计算存储下标的算式。但上面这种哈希函数明显不及格,因为非常浪费存储空间,我们创建了一个长度为58的哈希表却只存了四个元素。

那我们改良一下,把相加得到的结果再取余
dog = 4 + 15 + 7 = 26
cat = 3 + 1 + 20 = 24
sheet = 19 + 8 + 5 + 5 + 20 = 57
pig = 16 + 9 + 7 = 32

dog = 26 % 4 = 2
cat = 24 % 4 = 0
sheet = 57 % 4 = 1
pig = 32 % 4 = 0

这样只用创建一个长度为3的哈希表就可以存储下这四个元素了。(上面再取余后得到两个0,这是哈希冲突,暂时不管,刻意地安排,为了引入相关内容。)

哈希函数深入研究
不讨论深入研究。哈希函数的算法设计是哈希表的精髓,既要不浪费存储空间,又要避免哈希冲突,真的好难哦,我们难道真的要殚精竭力整起算法?参考一下JDK源码就行了呗。下面取自 JDK1.8版本HashMap的源码。

if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);

tab是一个数组,其中“(n - 1) & hash”就是计算存储下标的哈希函数。&运算符相当于取余运算,具体参考这篇文章使用与运算符代替求余运算符的技巧

四、哈希冲突

从上面的伏笔说起。在取余后得到了两个0,cat和pig都想存到下标为0的单元格中,这就是哈希冲突。既然发生了冲突,那肯定有解决的办法,主要有两个,一是链地址法、二是开发寻址法。

1.链地址法

因为HashMap中采用这种方式 ,所以我们重点介绍。

还是上面的例子我们有:
dog = 26 % 4 = 2
cat = 24 % 4 = 0
sheet = 57 % 4 = 1
pig = 32 % 4 = 0

链地址法解决冲突的方式就是在哈希表的每个单元格中设置链表,当有多个元素经过哈希函数计算后得到同一个存储位置,只需要加到链表中即可。
在这里插入图片描述
第一步在哈希表中找到存储位置的操作是常数级的,即时间复杂度是O(1),但是之后在链表中的相关操作却是O(N)的,所以在JDK1.8之后版本的HashMap中引入了红黑树,当链表中的节点个数大于等于8个的时候,就将该链表转换成红黑树以提高效率。

所以实际中的HashMap底层数据结构是这样的。
在这里插入图片描述

2.开放寻址法

开放寻址法又包括三种解决冲突的方式:线性探测、二次探测、再哈希。

线性探测

还是上面的例子
dog = 26 % 4 = 2
cat = 24 % 4 = 0
sheet = 57 % 4 = 1
pig = 32 % 4 = 0

0是pig要存入的位置,它已经被cat占用了,那就使用1,之后是2,依次类推,数组下标一直递增,直到找到空位。这就叫做线性探测。

二次探测

在线性探测中,如果哈希函数计算的原始下标是x,线性探测就是x+1,x+2,x+3,依次类推。而在二次探测中,探测的过程是x+1,x+2的平方,x+3的平法,x+4的平法,依次类推。

再哈希

即用另一个哈希函数再计算一遍,并以这个值作为探测的长度。

  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 技术工厂 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值