动态规划--矩阵 类型题目整合

最大正方形(lc221)

在一个由 0 和 1 组成的二维矩阵内,找到只包含 1 的最大正方形,并返回其面积。

示例:

输入:

1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 0

输出: 4

来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/maximal-square
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

动态规划迭代式

如果该位置的值是 00,则 dp(i, j) = 0,因为当前位置不可能在由 11 组成的正方形中;

如果该位置的值是 11,则 dp(i, j) 的值由其上方、左方和左上方的三个相邻位置的 dp
值决定。具体而言,当前位置的元素值等于三个相邻位置的元素中的最小值加 11,状态转移方程如下:

dp(i, j)=min(dp(i−1, j), dp(i−1, j−1), dp(i, j−1))+1
dp(i,j)=min(dp(i−1,j),dp(i−1,j−1),dp(i,j−1))+1

如果读者对这个状态转移方程感到不解,可以参考 1277. 统计全为 1 的正方形子矩阵的官方题解,其中给出了详细的证明。

此外,还需要考虑边界条件。如果 ii 和 jj 中至少有一个为 00,则以位置 (i, j)(i,j) 为右下角的最大正方形的边长只能是
11,因此 dp(i, j) = 1dp(i,j)=1。

dp过程
作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/maximal-square/solution/zui-da-zheng-fang-xing-by-leetcode-solution/
来源:力扣(LeetCode) 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

另一篇题解
原理

最大矩形(lc85)

leetcode地址

非动态规划法

法一:计算每行的最大宽度,再从节点向上搜索,
最大宽度的最小值*高 = 面积
法二:分治
法三:单调栈

动态规划算法

给定一行 matrix[i],我们通过定义三个数组height,left,和 right来记录每个点的h,l,和 r。height[j]
对应matrix[i][j]的高,以此类推。

问题转化为如何更新每个数组。

Height:

这个比较容易。 h 的定义是从该点出发连续的1的个数。我们从方法二中已经学会了在一行中计算的方法:

row[j] = row[j - 1] + 1 if row[j] == ‘1’ 只需要一点改动即可:

new_height[j] = old_height[j] + 1 if row[j] == ‘1’ else 0 Left:

考虑哪些因素会导致矩形左边界的改变。由于当前行之上的全部0已经考虑在当前版本的left中,唯一能影响left就是在当前行遇到0。

因此我们可以定义:

new_left[j] = max(old_left[j], cur_left)
cur_left是我们遇到的最右边的0的序号加1。当我们将矩形向左 “扩展” ,我们知道,不能超过该点,否则会遇到0。

Right:

我们可以沿用 left 的思路,定义:

new_right[j] = min(old_right[j], cur_right) cur_right
是我们遇到的最左边的0的序号。简便起见,我们不把 cur_right 减去1 (就像我们给cur_left加上1那样)
,这样我们就可以用height[j] * (right[j] - left[j]) 而非height[j] * (right[j] + 1

  • left[j])来计算矩形面积。

这意味着, 严格地说 ,矩形的底边由半开半闭区间[l, r) 决定,而非闭区间 [l, r],且
right比右边界大1。尽管不这样做算法也可以正确运行,但这样会让计算看起来更简洁。

注意,为了正确的记录 cur_right,我们需要从右向左迭代。因此,更新right时需要从右向左。

一旦left,right,和 height数组能够正确更新,我们就只需要计算每个矩形的面积。

由于我们知道矩形 j的边界和高,可以简单地用height[j] * (right[j] - left[j])来计算面积,若j的面积
大于max_area,则更新之。

作者:LeetCode
链接:https://leetcode-cn.com/problems/maximal-rectangle/solution/zui-da-ju-xing-by-leetcode/
来源:力扣(LeetCode) 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
1
2
3
4
5
6

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值