自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(118)
  • 收藏
  • 关注

原创 Paper Reading (2024/04/10)

短语:“It is even on par with”

2024-04-09 23:00:00 819

原创 ISS点云内部形状特征描述子

ISS点云内部形状特征描述子的提取流程针对输入点云的每个点p构建一个球形邻域针对球形邻域内的点,依距离的反比计算每个点对中心点的贡献计算每个点的协方差矩阵,并记协方差矩阵的三个特征值分别为λ1\lambda_{1}λ1​、λ2\lambda_{2}λ2​、λ3\lambda_{3}λ3​,且λ1\lambda_{1}λ1​>λ2\lambda_{2}λ2​>λ3\lambda_{3}λ3​设置阈值ϵ1\epsilon_{1}ϵ1​、ϵ2\epsilon_{2}ϵ2​, 通常情况下,ϵ1

2022-07-20 12:27:40 513

原创 关于多传感器融合方法的总结与思考

点云的各种表示BEV优势能够完好地保留物体的尺度信息,不存在2D图像中物体尺度变化大的问题(近处的物体尺度较大,远处的物体尺度较小)不存在2D图片表示下,物体相互遮挡的问题large and sparse劣势不适用于检测小尺度物体(比如行人或者自行车等等)不适用于检测空间中分布较为密集的物体不适用于室内数据集的检测,因为在室内数据集中,可能存在物体相互遮挡的情况(比如椅子位于书桌下等等)(解决方式:文献[])小尺度物体的信息在网络下采样的过程中可能会发生丢失(解决方式:文献.

2022-07-20 12:25:50 1270

原创 Leetcode198 打家劫舍

你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。示例 1:输入:[1,2,3,1]输出:4解释:偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。 偷窃到的最高金额 = 1 + 3 = 4 。示例 2:输入...

2022-02-04 22:03:17 164

原创 位运算心得

1.i&(i-1)表示将数字i的最低有效位置为02.i&1可以用于判断i为奇数还是偶数3.i&(i-1)==0可以用于过滤那些2的正整数次幂的数例题参考Leetcode题解

2022-02-02 12:10:40 735

原创 关于PaddlePaddle环境安装的注意事项

1.在安装CUDNN的时候,通过官方文档的教程进行安装,不要使用conda暗账2.PaddlePaddle的分布式训练需要依赖libnccl.so,这个可参考xiam

2021-06-10 11:26:19 241

原创 Incremental learning

Motivation现有的关于continual learning的方法主要分为以下三大类:Feature Extraction这类方法通常会固定住共享网络以及old task head分支的参数,单独训练new task head分支Fine-tuning这类方法主要微调共享网络的参数,固定old task head分支的参数,并重新训练new task head上的参数Joint training这类方法会同时给网络输入所有的训练数据,并从头到尾训练整个模型上述三种

2021-03-30 17:06:39 158

原创 基于多传感器融合的3D检测算法(二)

3D Proposal Based Sequential Model这类方法是直接从输入数据中生成3D检测框。目前的方法大致可以分为一下两种:基于多视图的融合方法基于体素的融合方法基于多视图的融合方法该类方法的一个典型代表是MV3D。基于体素的融合方法...

2021-03-14 17:28:56 1227 2

原创 Harris 2d--角点检测

Harris角点的定义关于Harris角点,目前并没有与之相关的严格的定义。我们可以认为harris角点就是图片中像素值变化较为明显的点,更为形象地,我们可以认为harris角点即是两条线的交界点。Harris角点检测的算法思想对于一张图片,我们可以将其内部的区域分为3种类型:平滑区域、Harris角点检测的算法流程...

2021-02-22 22:14:07 303

原创 求解x的n次方

解法一(简单模拟)int function1(int x, int n) { int result = 1; // 注意 任何数的0次方等于1 for (int i = 0; i < n; i++) { result = result * x; } return result;}解法二(递归)int function4(int x, int n) { if (n == 0) { return 1; }.

2021-02-22 11:54:15 1139 1

原创 斐波那契数列问题的三种解法

递归解法int fib(int N) { if (N < 2) return N; return fib(N - 1) + fib(N - 2); }上述解法的时间复杂度为O(2^N),空间复杂度为O(N)动态规划解法解法一int fib(int N) { if (N < 2) return N; return fib(N - 1) + fib(N - 2); }上述解法的时间复杂度为O(N).

2021-02-22 11:52:04 236

原创 Python中one_hot编码的写法

写法一GCN中的写法:def encode_onehot(labels): classes = set(labels) classes_dict = {c: np.identity(len(classes))[i, :] for i, c in enumerate(classes)} labels_onehot = np.array(list(map(classes_dict.get, labels)),

2021-02-22 10:49:56 459

原创 用迭代法遍历二叉树

基于迭代法的二叉树中序遍历vector<int> inorderTraversal(TreeNode* root) { vector<int> result; stack<TreeNode*> st; TreeNode* cur = root; if(root!=NULL) st.push(root); while(!st.empty()){ TreeNode* no

2021-02-22 10:00:43 123

原创 leetcode 剑指 Offer 39. 数组中出现次数超过一半的数字

数组中有一个数字出现的次数超过数组长度的一半,请找出这个数字。你可以假设数组是非空的,并且给定的数组总是存在多数元素。示例1:输入: [1, 2, 3, 2, 2, 2, 5, 4, 2]输出: 2限制:1 <= 数组长度 <= 50000解法一(摩尔投票法)int majorityElement(vector<int>& nums) { if(CheckInvalidArray(nums)) return -1; .

2021-02-22 08:10:47 126

原创 二分搜索(lintcode搜索二维矩阵)

搜索二维矩阵描述写出一个高效的算法来搜索 m × n矩阵中的值。这个矩阵具有以下特性:每行中的整数从左到右是排序的。每行的第一个数大于上一行的最后一个整数。思路分别对矩阵的行和矩阵的列使用二分搜索解法一class Solution {public: /** * @param matrix: matrix, a list of lists of integers * @param target: An integer * @ret

2021-01-30 21:10:29 137

原创 二分搜索(寻找旋转数组中的最小值)

LintCode519 寻找旋转数组中的最小值描述假设一个排好序的数组在其某一未知点发生了旋转(比如0 1 2 4 5 6 7 可能变成4 5 6 7 0 1 2)。你需要找到其中最小的元素。思路因为题目中特地强调了是对排序数组进行翻转,因此我们在使用二分法确定搜索范围的时候,如果发现数组左端点处的值小于数组中点的值,说明左数组是一个升序排列的数组,数组最小值只可能存在于右数组当中;反之,如果发现数组左端点处的值大于数组中点的值,说明右数组是一个升序数组,那么数组最小值只可能存在与左数组当中。

2021-01-29 17:00:05 131

原创 Meta-learning入门(一)

Omniglot数据集整个数据集包含1623个不同的手写字符,每个手写字符都由20个不同的人参与绘制在Pytorch-meta的实现当中,其训练集包含了1028个手写字符,涉及到的数据增强有3种,分别为旋转90度、旋转180度以及旋转270度,这样一来,训练样本的总个数就从1028扩充到了1028*4=4112个Omniglot数据集的加载将4112张扩充后的图片视为一个整体,并进行洗牌,然后在洗牌之后的数据集进行样本的挑选采用5-way 5-shot的训练方式,在每一个epoch中,挑.

2021-01-10 23:22:27 543

原创 技术学习心得(11-28)

fastsi中的adam_one_cycle优化策略学习链接:用 fastai 解释什么是 one-cycle-policyPython中的lambda和apply用法Pytorch中apply函数的用法

2021-01-10 17:20:01 154

原创 基于多传感器融合的3D检测文献总结(一)

2D Proposal Based Sequential Models该类检测方法主要分为两个阶段:一个是候选框生成阶段(RPN阶段),一个是候选框的精修阶段(RCNN阶段)。在RPN阶段中,该类方法通常会借用已有的2D检测器在给定的图片上生成相应的候选框。然后再基于一阶段生成的候选框检索得到相应的种子区域,并通过对种子区域的特征提取完成后续阶段的refine.通常情况下,将2D语义信息与3D几何信息结合的方式有2种:一种是将2D检测框投影到3D空间,产生相应的frustum,并以frustum为种

2020-11-17 17:20:41 422

原创 TANet数据预处理流程

2020-10-07 21:54:05 775

原创 Pillar-based Object Detection for Autonomous Driving

MotivationRecent methods like pointpillar or MVF highly rely on anchors to predict parameters of bounding boxes, but authors think that it is unessesarry and uneffctive to do in this way for two reasons:hyperparameters of anchors need to be fine-tuned

2020-09-29 20:45:01 403

原创 Pytorch FasterRCNN官方代码学习笔记

attach_linux_amd64.so: undefined symbol: AttachDebuggerTracing的解决办法

2020-09-29 19:49:20 784

原创 学习笔记(6.8-6.14)

6.9Pytorch中的Parameter()参考博客:PyTorch里面的torch.nn.Parameter()Pytorch模型中的parameter与bufferGCN源码:class GraphConvolution(Module): """ Simple GCN layer, similar to https://arxiv.org/abs/1609.02907 """ def __init__(self, in_features, out_fe

2020-07-14 13:40:14 115

原创 学术论文句式(二)

3D datasets are typically much smaller in quantity, with relativelysmall amount of labels and limited diversitydata augmentation (DA) is a very common strategy to avoid overfitting and improve the ...

2020-07-14 13:39:14 266

原创 3D论文总结(9.2-9.6)

《A-CNN: Annularly Convolutional Neural Networks on Point Clouds》研究问题 本文主要解决的是点云的分类、部件分割和场景分割的问题 作者提出了一种新的方法对点云的局部区域进行建模 创新点 文章将点云的局部区域建模为一个环形区域,并基于该环形区域提出了环形卷积。这样做的目的,主要是为了减少...

2020-02-21 09:01:35 274

原创 学术论文句式(一)

As there only two parameters per feature map, the total number of BN parameters comprise less than 1% of the total number of parameters of a pre-trained ResNet.To summarize, our contributions are th...

2020-02-21 09:00:04 597

原创 RotationNet: Joint Object Categorization and Pose Estimation Using Multiviews from Unsupervised View

CVPR2018论文标题 RotationNet: Joint Object Categorization and Pose Estimation Using Multiviews from Unsupervised Viewpoints 研究问题 3D形状识别与检索 前提假设 object classification与viewpoint e...

2020-02-21 08:59:28 737

原创 逻辑趣味题整理

1.五个洞排成一排,其中一个洞里藏有一只狐狸。每个夜晚,狐狸都会跳到一个相邻的洞里;每个白天,你都只允许检查其中一个洞。怎样才能保证狐狸最终会被抓住?2.有23枚硬币在桌上,10枚正面朝上。蒙住你的眼睛(你无法分清正反),如何分成两组,让两组硬币正面朝上的一样多?3.有两组硬币,一组100个,另一组200个。甲乙两方分别拿,可以选择在一组中拿走任何多个(不能不拿),或在两组中拿走同样多个(...

2020-02-21 08:57:50 3657

原创 关于Conditional Normalization的文章总结

ICLR 2017论文标题 Modulating early visual processing by language 研究问题 VQA 前提假设 创新点 解决方案 不足之处 论文标题 Conditional Image Synthesis with Auxilia...

2020-02-21 08:57:13 1402

原创 实验心得(2019.11.28-2019.12.08)

在进行实验的时候,首先测试baseline,实验过程中产生的各种想法可以考虑先在baseline上进行实验。如果确实能够给baseline的性能带来一定的提升,那么我们就可以将想法移植到我们当前已经设计好的新结构上。 Python中的内存管理机制 在提取网络层的中间输出的时候,尽量不要把网络的中间输出保留在类的成员变量(即__init__函数)当中,应该考虑保留在类的forward函数中。 ...

2020-02-21 08:56:44 129

原创 论文阅读之《GAPNet: Graph Attention-based Point Neural Network for Exploiting Local Feature of Point Cloud

《GAPNet: Graph Attention-based Point Neural Network for Exploiting Local Feature of Point Cloud》研究问题 如何更好地提取点云的局部特征 主要想法 采用self-attention和neighboring attention的机制,一方面通过self-attetion来提取输入...

2020-02-21 08:56:15 1213 3

原创 技术总结

1.Numpy数组索引为NoneNone并不指代数组中的某一维,None用于改变数组的维度。例如data的shape为(3,3),则data[:,None]的shape是(3,1,3),data(:,:,None)的shape是(3,3,1)。容易看出None就是在指定位置添加一维,且这个维度的数目是1。这样数据总数并不会变化,只是数据维度发生变化。2.copy.deepcopy()首...

2020-02-21 08:55:12 182

原创 周总结(2019.9.2-2019.9.8)

技术总结:s[::k]的意思是“每k个项目” torch.range(start=1, end=6)的结果是会包含end的, 而torch.arange(start=1, end=6)的结果并不包含end。 两者创建的tensor的类型也不一样。...

2020-02-21 08:54:20 202

原创 总结(暑假)

编程心得:Python中放入“//”采用的是向下取整 程序报错:“iteration over a 0-d tensor”,很有可能是因为函数值返回了一个参数,但是在调用函数的过程却采用了两个参数。 cv2.imread读取到的图片是BGR格式的,PIL读取到的图片是RGB格式的,两种方式读取到的图片在显示的时候是有区别的 那么如何将BGR图片格式转换为RGB图片格式呢? 方法一...

2020-02-21 08:53:44 401

原创 石子合并问题(动态规划)

题目描述在一个圆形操场的四周摆放NN堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分。试设计出一个算法,计算出将NN堆石子合并成11堆的最小得分和最大得分。输入格式数据的第11行是正整数NN,表示有N堆石子。第22行有NN个整数,第ii个整数a_iai​表示第ii堆石子的...

2020-01-29 17:06:41 1762 1

原创 最优三角形剖分

#include <algorithm>#include <algorithm>#include <iostream>using namespace std;#define N 1000#define INF 100000int d[N + 1][N + 1], m[N + 1][N + 1];void optimal_polygon_t...

2020-01-27 16:27:55 221

原创 矩阵链乘法

#include <iostream>#include <cstring>#include <algorithm>using namespace std;#define N 100#define INF 1000000int p[N + 1], m[N + 1][N + 1];void matrixchain(int n) { m...

2020-01-27 15:54:07 131

原创 又是斐波那契数列(计蒜客)

有另一种斐波那契数列:F0​=7,F1 =11,Fn​=Fn−1​+Fn−2​(n≥2)。输入格式输入数据有多行组成,每一行上是一个整数n(n<10^6)。输出格式如果Fn 能被33整除,那么打印一行"yes",否则,打印一行"no"。#include <iostream>using namespace std;long long F[...

2020-01-25 18:45:18 906

原创 GAN的原理(李宏毅GAN笔记)

我们通常用GAN来做Gerneration。对于一张图片x,其通常分布在高维空间中的一个流行上。在下图中,位于蓝色区域的点仅有很大的概率出现在我们的database中。那么图像生成的主要任务是什么呢?给定义原始数据的分布,再给定一个以作为参数的概率模型,该模型可以由generator学习得到。我们希望的,便是找到相应的参数,使得原始数据集中的样本x在由G所定义的概率分布中出现的概率...

2019-07-15 19:13:54 2095

原创 Multi-scale method and deep learning

在《Going deeper with convolutions》一文当中,作者特别提到了多尺度特征融合的技术,对此,我特地goole了一下,在此特将心得总结一波:类似于我们用显微镜去观察一个物体:当我们使用高分辨率的显微镜去观察物体时,我们看到的是物体较为细微的特征,进而有助于我们捕捉到物体的细节信息;当我们使用低分辨率的显微镜去观察物体的时候,我们拥有的是更为广阔的视野,从而更有助于我们捕...

2019-02-01 21:22:11 300

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除