效果评估
推荐系统在为用户推荐物品时通常有两种方式:
- 评分预测
此方法一般通过学习用户对物品的历史评分,预测用户可能会为他没有进行评分的物品打多少分,通常用于在线视频、音乐等服务的推荐。
评分预测的效果评估一般通过均方根误差(RMSE)和平均绝对误差(MAE)计算。对于测试集T中的一个用户u和物品i,令 r u i r_{ui} rui是用户u对物品i的实际评分,而 r ^ u i \hat{r}_{ui} r^ui是推荐系统给出的预测评分,则RMSE定义为:
MAE定义为:
- TopN推荐
此方法一般不考虑评分,而是为用户提供一个个性化推荐列表,通过预测用户对物品的兴趣度对列表进行排序,选取其中前N个物品推荐给用户,通常用于电子商务、社交网络、互联网广告推荐。
TopN推荐一般通过准确率(precision)、召回率(recall)和F1值(平衡分数)度量。令 R ( u ) R(u) R(u)是为用户推荐的物品列表, T ( u ) T(u) T(u)是用户在测试集上的行为列表。
召回率定义为:
准确率定义为:
F1值定义为:
总体
- 推荐系统通常分为召回和排序两个步骤
- 召回:粗排选取合适的内容,可以通过协同过滤,兴趣tag,内容最热等方式
- 排序(CTR预估):使用一个点击率预估模型(输入用户特征,内容特征,用户内容交叉特征等)对召回出来的内容进行排序
召回常用算法
基于内容
协同过滤
基于矩阵分解:https://blog.csdn.net/taoyanqi8932/article/details/62052684
https://blog.csdn.net/greedystar/article/details/80813057
基于知识:https://blog.csdn.net/gongxifacai_believe/article/details/82144938
https://blog.csdn.net/shinecjj/article/details/82286386
基于模型:https://blog.csdn.net/c9Yv2cf9I06K2A9E/article/details/82881839
排序常用算法
参考:
1.https://blog.csdn.net/greedystar/article/details/80813057