推荐系统综述

效果评估

推荐系统在为用户推荐物品时通常有两种方式:

  1. 评分预测
    此方法一般通过学习用户对物品的历史评分,预测用户可能会为他没有进行评分的物品打多少分,通常用于在线视频、音乐等服务的推荐。
    评分预测的效果评估一般通过均方根误差(RMSE)和平均绝对误差(MAE)计算。对于测试集T中的一个用户u和物品i,令 r u i r_{ui} rui是用户u对物品i的实际评分,而 r ^ u i \hat{r}_{ui} r^ui是推荐系统给出的预测评分,则RMSE定义为:
    在这里插入图片描述
    MAE定义为:
    在这里插入图片描述
  2. TopN推荐
    此方法一般不考虑评分,而是为用户提供一个个性化推荐列表,通过预测用户对物品的兴趣度对列表进行排序,选取其中前N个物品推荐给用户,通常用于电子商务、社交网络、互联网广告推荐。
    TopN推荐一般通过准确率(precision)、召回率(recall)和F1值(平衡分数)度量。令 R ( u ) R(u) R(u)是为用户推荐的物品列表, T ( u ) T(u) T(u)是用户在测试集上的行为列表。
    召回率定义为:
    在这里插入图片描述
    准确率定义为:
    在这里插入图片描述
    F1值定义为:
    在这里插入图片描述

总体

  • 推荐系统通常分为召回和排序两个步骤
  • 召回:粗排选取合适的内容,可以通过协同过滤,兴趣tag,内容最热等方式
  • 排序(CTR预估):使用一个点击率预估模型(输入用户特征,内容特征,用户内容交叉特征等)对召回出来的内容进行排序

召回常用算法

基于内容
协同过滤
基于矩阵分解:https://blog.csdn.net/taoyanqi8932/article/details/62052684
https://blog.csdn.net/greedystar/article/details/80813057
基于知识:https://blog.csdn.net/gongxifacai_believe/article/details/82144938
https://blog.csdn.net/shinecjj/article/details/82286386
基于模型:https://blog.csdn.net/c9Yv2cf9I06K2A9E/article/details/82881839

排序常用算法

参考:
1.https://blog.csdn.net/greedystar/article/details/80813057

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值