文本生成NLG

参考:https://www.jianshu.com/p/ffbd9abc5fff

NLG的常见形式

  • text to text,如对话机器人
  • data to text,如BI报告生成
  • image to text,如图片自动描述

NLG的发展过程

  • 简单的数据合并
  • 模板化的 NLG
  • 高级 NLG

NLG的6个步骤(传统处理方式)

  • 第一步:内容确定 - Content Determination
    作为第一步,NLG 系统需要决定哪些信息应该包含在正在构建的文本中,哪些不应该包含。通常数据中包含的信息比最终传达的信息要多。

  • 第二步:文本结构 - Text Structuring
    确定需要传达哪些信息后,NLG 系统需要合理的组织文本的顺序。例如在报道一场篮球比赛时,会优先表达「什么时间」「什么地点」「哪2支球队」,然后再表达「比赛的概况」,最后表达「比赛的结局」。

  • 第三步:句子聚合 - Sentence Aggregation
    不是每一条信息都需要一个独立的句子来表达,将多个信息合并到一个句子里表达可能会更加流畅,也更易于阅读。

  • 第四步:语法化 - Lexicalisation
    当每一句的内容确定下来后,就可以将这些信息组织成自然语言了。这个步骤会在各种信息之间加一些连接词,看起来更像是一个完整的句子。

  • 第五步:参考表达式生成 - Referring Expression Generation|REG
    这个步骤跟语法化很相似,都是选择一些单词和短语来构成一个完整的句子。不过他跟语法化的本质区别在于“REG需要识别出内容的领域,然后使用该领域(而不是其他领域)的词汇”。

  • 第六步:语言实现 - Linguistic Realisation
    最后,当所有相关的单词和短语都已经确定时,需要将它们组合起来形成一个结构良好的完整句子。

NLG技术汇总

1.传统方法
  • 基于模版的NLG
  • 基于树的NLG
2.基于语言模型
  • Plan-Based NLG:语法树
  • Class-Based LM:概率语言模型
  • Phrase-Based
  • Corpus based
3.基于深度学习
  • RNN-Based LM
  • Semantic Conditioned LSTM
  • Structural NLG:seq2seq
  • Contextual NLG:seq2seq,适合多轮对话
  • Controlled Text Generation:基于GAN的NLG
  • Transfer learning for NLG:用迁移学习做NLG
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值