Python学习-机器学习实战-ch02KNN_part3

其实KNN这章用不着分成三部分的……

=======================================

手写数字识别系统

这是将之前的KNN用来检测手写数字数据集

数据集来源:《机器学习实战》数据集及源代码

下面是书中代码:

def img2vector(filename):
    returnVec=zeros((1,1024))
    #该例中的数据集图像大小为32*32;
    #将图像存储在一个1*1024数组中
    fr=open(filename)
    for i in range(32):
        lineStr=fr.readline()
        for j in range(32):
            returnVec[0,32*i+j]=int(lineStr[j])
            #每一个字符值的读,0代表是第一行(只有1行)。
    return returnVec

def handwritingClassTest():
    hwLabels=[]
    trainingFileList=os.listdir('trainingDigits')
    #os.listdir获取目录内容
    m=len(trainingFileList)
    #m是目录内文件个数
    trainingMat=zeros((m,1024))
    for i in range(m):
        fileNameStr=trainingFileList[i]
        fileStr=fileNameStr.split('.')[0]
        #按照'.'分开,只获取文件名
        classNumStr=int(fileStr.split('_')[0])
        #这个数据集文件的命名方式有关
        hwLabels.append(classNumStr)
        #训练集的类别标签
        trainingMat[i,:]=img2vector('trainingDigits/%s'%fileNameStr)
        #按照顺序逐个读取文件
    testFileList=os.listdir('testDigits')
    errorCount=0
    mTest=len(testFileList)
    for i in range(mTest):
        fileNameStr=testFileList[i]
        fileStr=fileNameStr.split('.')[0]
        classNumStr=int(fileStr.split('_')[0])
        vectorUnderTest=img2vector('testDigits/%s'%fileNameStr)
        classifierResult=classify(vectorUnderTest,trainingMat,hwLabels,3)
        print("the classifier came back with:%d, the real answer is %d" %(classifierResult,classNumStr))
        if(classifierResult!=classNumStr):errorCount+=1.0
    print("the total number of error is: %d" %(errorCount))
    print("the total error rate is: %f" %(errorCount/float(mTest)))
数据集中,图像为32*32大小的二维数组,用0、1表示

img2vector函数将二维数组转换成1*1024的数组。

handwritingClassTest函数使用之前的KNN实现分类功能。
不同在于,listdir使用了os.listdir替换


结果片段:


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值