自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(21)
  • 资源 (2)
  • 收藏
  • 关注

原创 计算机网络期末复习记录

目录前言一、概述1.1 三种交换方式1.1.1 电路交换1.1.2 分组交换 1.1.3 报文交换 1.2 计算机网络新性能指标 1.3 计算机网络体系结构二、物理层2.1 基本概念2.2 信道的极限容量三、数据链路层3.1 CRC差错检测 3.2 MAC地址 四、网络层4.1 IPv4 4.2 IPv4的数据包首部格式...

2022-06-19 17:01:29 289 1

原创 python计算机视觉--基于(BOW)的图像检索与识别

目录前言一、基本原理1.1 图像分类简介1.2 Bag-f-words模型1.3 Bag-of-features模型1.4 Bag-of-features算法1.5 Bag-of-features过程1.6 TF-IDF二、代码实现2.1 数据集2.2 创建词汇2.3 建立数据库2.4 在数据库中搜素图像............

2022-06-16 20:28:29 1909 1

原创 python计算机视觉 相机标定--张正友棋盘格标定法

前言此次实验将用张正友棋盘格标定法对相机参数进行标定。”张正友标定法”是指张正友教授1998年提出的单平面棋盘格的摄像机标定方法。文中提出的方法介于传统标定法和自标定法之间,但克服了传统标定法需要的高精度标定物的缺点。相对于自标定而言,提高了精度,便于操作。因此张正友标定法被广泛应用于计算机视觉方面。环境win10,python3.8.5,opencv4.5.3,pycharm,用于标定的手机型号:荣耀20一、实验原理1.1 相机标定简介在图像测量过程以及机器视觉应用中,为确定空..

2022-05-17 22:36:45 7563 6

原创 Anaconda常见命令

在windons命令行中:1.检查当前conda版本:conda --version2.升级当前版本的conda:conda update conda3.查看当前环境的python版本:python --version4.查看创建的所有环境:conda info -e或者conda env list5.创建新的虚拟环境:conda create -n your_env_name python=X.X该命令创建指定python版本为X.X、

2022-05-06 21:14:43 705

原创 python计算机视觉--全景图像拼接

一、RANSAC算法1.1 RANSAC算法简介RANSAC (随机一致性采样)是一种迭代算法,该算法从一组包含“外点(outlier)”的观测数据中估计数学模型的参数。“外点”指观测数据中的无效数据,通常为噪声或错误数据,比如图像匹配中的误匹配点和曲线拟合中的离群点。与“外点”相对应的是“内点(inlier)”,即用来估计模型参数的有效数据。因此,RANSAC也是一种“外点”检测算法。此外,RANSAC算法是一种非确定算法,它只能在一定概率下产生可信的结果,当迭代次数增加时,准确的概率也会增加..

2022-04-10 17:37:32 5143

原创 PyQt5(二) python程序打包成.exe文件

前言我们在pycharmshang都会用到一些第三方包,可能别人也需要用到我们的脚本,如果我们将我们的xx.py文件发给他,他是不能直接用的,他还需要安装python解释器,甚至还要安装我们用的那些第三方包,是不是有点小麻烦?但是我们都知道,PC是可以直接运行exe文件的,这就为我们提供了一个便捷的方式。所以,从看了这个教程以后,这都将成为过去式,打成exe之后,分享即可用。...

2022-04-07 17:21:13 26027 5

原创 PyQt5(一) PyQt5安装及配置,从文件夹读取图片并显示,模拟生成素描图像

一、环境配置1.1 安装PyQt5按住win+R输入cmd在命令行下使用pip安装,但是需要SIP的支持,所以先安装SIP,再安装pyqt5pip install sip由于安装默认使用国外的镜像,可能因为网络问题会导致下载慢或者失败的现象。所以我们可以使用国内的镜像,比如清华的镜像源:https://pypi.tuna.tsinghua.edu.cn/simplepip install sip -i https://pypi.tuna.tsinghua.edu.cn/simpl..

2022-04-03 21:43:00 20836 8

原创 python计算机视觉--局部图像描述子:Harris角点检测算法、SIFT(尺度不变特征变换)

前言本次实验通过参考教材《Python计算机视觉编程》和网上大量资料学习局部图像描述子,Harris角点检测器,SIFT特征,匹配地理标记图像相关内容。一、Harris角点检测算法1.1 角点是什么角点具有的特征:<1>轮廓之间的交点;<2>局部窗口沿任意方向移动,均产生明显变化的点;<3>图像局部曲率突变的点;<4>对于同一场景,即使视角发生变化,通常具备稳定性质的特征;<5>该点附近区域的像素点无论在....

2022-03-30 14:58:14 7172

原创 python计算机视觉---图像处理基础:直方图、直方图均衡化、高斯滤波

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言 一、pandas是什么? 二、使用步骤 1.引入库 2.读入数据 总结前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。提示:以下是本篇文章正文内容,下面案例可供参考一、pandas是什么?示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分

2022-03-14 22:48:22 6525

原创 C++课设 简易图像处理系统

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言 一、pandas是什么? 二、使用步骤 1.引入库 2.读入数据 总结前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。提示:以下是本篇文章正文内容,下面案例可供参考一、pandas是什么?示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分

2022-02-07 18:16:26 6357 12

原创 数字图像处理课程设计---基于卷积提取图像特征+感知哈希算法相似度比较的身份证图像分拣技术

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言 一、pandas是什么? 二、使用步骤 1.引入库 2.读入数据 总结前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。提示:以下是本篇文章正文内容,下面案例可供参考一、pandas是什么?示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分

2022-01-19 17:44:41 2909

原创 机器学习 利用支持向量机解决审计分险分类问题

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言 一、pandas是什么? 二、使用步骤 1.引入库 2.读入数据 总结前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。提示:以下是本篇文章正文内容,下面案例可供参考一、pandas是什么?示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分

2021-12-26 22:15:30 669

原创 机器学习 朴素贝叶斯分类食品安全新闻

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言 一、pandas是什么? 二、使用步骤 1.引入库 2.读入数据 总结前言这次实验将学习利用朴素贝叶斯方法对垃圾邮件,食品安全新闻进行分类。提示:以下是本篇文章正文内容,下面案例可供参考一、预备知识1.基本概念先验概率:根据以往经验和分析得到的某事情发生的概率,比如厦门下雨的概率可以通过以往的经验或者统计结果得到,我们用P(Y)来表示在没有训练数据前假设Y拥有的初始概率。

2021-11-28 16:48:33 1263 3

原创 C++ STL(标准模板库)应用

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言 一、pandas是什么? 二、使用步骤 1.引入库 2.读入数据 总结前言此次实验将对C++中的标准模板库进行学习,并编写相关测试程序进行练习。提示:以下是本篇文章正文内容,下面案例可供参考一、实验内容1.撰写自己的算法和函数,结合容器和迭代器解决序列变换(如取反、平方、立方),像素变换(二值化、灰度拉伸);2.用set存储学生信息,并进行增删改查操作;3.输入一个字

2021-11-25 18:08:29 1088

原创 机器学习 利用Logistic回归解决审计风险分类问题

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言 一、pandas是什么? 二、使用步骤 1.引入库 2.读入数据 总结前言利用Logistic回归方法对公司审计是否存在风险进行分类,Logistic回归方法进行分类并不需要做很多工作,所需做的只是把测试集上每个特征向量乘以最优化方法得来的回归系数,再将该乘积结果求和,最后输入到Sigmoid函数中即可。提示:以下是本篇文章正文内容,下面案例可供参考一、pandas是什么?示例:

2021-11-22 11:17:43 1314

原创 C++ 模板类与智能指针

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言 一、pandas是什么? 二、使用步骤 1.引入库 2.读入数据 总结前言本次实验将实现模板类,模板函数,模板函数特化,智能指针的设计,并对其进行相应测试。一、实验内容一、模板函数(compare) 1.一般模板函数 2.特化模板函数二、类模板Queue 1.类模板(Queue) 2.成员模板函数 ...

2021-11-16 23:22:47 2403

原创 C++实验2 继承和多态

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言 一、pandas是什么? 二、使用步骤 1.引入库 2.读入数据 总结前言在此次实验中我将对C++ 类的多继承,虚继承,多态性以及友元函数进行实现练习提示:以下是本篇文章正文内容,下面案例可供参考一、实验内容一、继承访问权限测试 1.设计类A具有public, protected, private等不同属性的成员函数或变量 ...

2021-11-02 23:37:19 321

原创 决策树----对天气和自身状态是否适合去运动做出预测

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言 一、决策树原理 二、使用步骤 1.引入库 2.读入数据 总结前言提示:通过自建数据集,创建决策树对天气和身体状态是否适合去运动进行预测。提示:以下是本篇文章正文内容,下面案例可供参考一、决策树原理示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。二、使用步骤1.引入库代码如下(示例):import numpy as np

2021-10-27 22:46:13 10954

原创 kNN算法实现手写数字识别(机器学习)

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言 一、实验步骤 二、实验过程 1.收集数据:提供文本文件 2.准备数据:将图像转换为测试向量 3.测试算法:使用k-近邻算法识别手写数字 ​ 总结前言此时实验利用KNN算法实现手写数字识别,为了简单起见只能识别数字0到9需要识别的数字已经使用图形处理软件处理成相同的色彩和大小:宽高32像素x32像素的黑白图像,并将图像转换为文本格式。提示:以下是本篇文章正文内容,下面案例可供参考一

2021-10-09 23:26:48 16523 11

原创 实验一:CMatrix类设计(C++)

前言通过对CMatrix类的设计熟悉c++的类与对象,多态,构造函数等。提示:以下是本篇文章正文内容,下面案例可供参考一、实验内容一、构造函数 1.CMatrix():不带参数的构造函数; 2.CMatrix(intnRow,intnCol,double*pData=NULL):带行、列及数据指针等参数的构造函数,并且参数带默认值; 3.CMatrix(constchar*strPath):带文...

2021-10-07 23:36:55 221

原创 k-近邻算法实现约会网站配对效果

前言提示:机器学习第一次作业。提示:以下是本篇文章正文内容,下面案例可供参考一、KNN算法原理?1.1算法介绍KNN的全称是K Nearest Neighbors,意思是K个最近的邻居。K个最近邻居,毫无疑问,K的取值肯定是至关重要的。KNN的原理就是当预测一个新的值x的时候,根据它距离最近的K个点是什么类别来判断x属于哪个类别。图中绿色的点就是我们要预测的那个点,假设K=3。那么KNN算法就会找到与它距离最近的三个点(这里用圆圈把它圈起来了),看看哪种类别多一些,比...

2021-10-03 20:01:35 631

分类+朴素贝叶斯+食品安全新闻.zip

用于机器学习分类的数据集,食品安全新闻数据(.txt格式)

2021-11-28

audit_data.zip

用于机器学习的分类数据-------审计分险 属性信息:办公室的过去记录、审计参数、环境条件报告、公司声誉摘要、持续问题报告、利润值记录、损失值记录、后续报告等17个特征属性,1个类别标签

2021-11-22

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除