高斯混合模型:不掉包实现多维数据聚类分析

《实例》阐述算法,通俗易懂,助您对算法的理解达到一个新高度。包含但不限于:经典算法,机器学习,深度学习,LeetCode 题解,Kaggle 实战。期待您的到来!

01

回顾

昨天实现推送了,GMM高斯混合的EM算法实现的完整代码,这是不掉包的实现,并且将结果和sklearn中的掉包实现做了比较:聚类结果基本一致,要想了解这个算法实现代码的小伙伴,可以参考:

机器学习高斯混合模型:聚类原理分析(前篇)
机器学习高斯混合模型(中篇):聚类求解
机器学习高斯混合模型(后篇):GMM求解完整代码实现
机器学习储备(13):概率密度和高斯分布例子解析

以上包括了高斯混合模型的原理,公式推导过程,完整的代码实现,以及高斯概率密度公式的例子解析。

02

二维高斯分布聚类数据生成

在此不再将完整的代码黏贴上,有需要的请参考上个推送或者在微信或QQ群中和我要Jupyter NoteBook的实现代码。

下面仍然借助sklearn的高斯分布的数据簇生成功能,注意参数n_features的含义是生成2维(2个特征)的数据集。

x,label = make_blobs(n_samples=500,n_features=2, centers=3,
cluster_std=[0.6,1.2,1.8],
random_state=1)

sklearn生成的满足二维高斯分布的3簇数据如下所示:

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值