某电力企业校招潜规则曝光

1 校招潜规则

近日在某大学的校园招聘会上,某电力企业HR所带的招聘潜规则不小心被学生拍到,引起很多学生的热议。

dd9a50a7d54238b3ad17adae221fd29a.jpeg

该大厂明确指出,在校招中只关注电工类,其他类似控制工程、计算机、财务、审计、工程管理、工程造价、土木、能源动力这些都是找不到工作的专业。

what?这个单位的人力资源经理怎么想的?其他专业暂且不说,你敢说计算机是找不到工作的专业?进互联网大厂工资完爆你传统的电力企业,估计起草这个文件的领导十几年没到基层调研了吧。

120edf90fbcb101fba4eccbb185ada26.jpeg

另外,既然不愿意要这些专业的,又何必让人家投简历,报岗位呢?这不是浪费学生时间,而且简历彩印也是很贵的啊!

除此之外,还暗地里规定,不要专升本、独立学院、民办院校的大学本科生,不要专科生。985、211及原电力部署院校的电工类本科生可以直接面试入职,不过第一年的工作地区有限制。

985、211的电工类研究生可以直接面试入职,同时岗位分配不受四类地区限制,且可以优先考虑个人意愿。

这真是等级分明啊,堪比笛子的薪资等级水平。看这形势,非电工类的小伙伴想要进电力企业,难度不是一般的大,还是要多努力,多提升啊。

2 学习充电

在这个技术飞速发展的时代,只有不断跟进技术,学习新技术,才能跟上时代脚步。想充电计算机IT、AI技术的老铁,我已经为大家准备了丰富的学习教程。

教程网站覆盖AI,编程,软件开发,爬虫,大数据分析,自动化,测试,运维等,当下很火的新技术,免费学习入口:

https://ai-jupyter.com

fd03bcc4cd20654741a6a553e9b15954.png

3 普通人学AI指南

普通人了解AI应该做的最重要两件事

  • 应该先从AI工具使用开始

  • 应该先了解AI基础名词

普通人了解AI大忌:

  • 不应该上来就学AI理论

  • 不应该排斥AI,认为AI无用

基于上面,我也花费不少时间,做了一个详细的开源教程:《普通人学AI指南》.PDF

咱们先别弄那些高深的AI理论,先玩熟AI基本概念、AI工具、自己电脑搭建AI和知识库。

e4e142671590a63c83fc5f6f82288a3d.png

PDF 指南思维导图

这个《普通人学AI指南》PDF,一共42页,都是我来编写的,完全开源,大家在我下面的公众号回复:AI,直接拿走。

两个星期,你就通过AI,大幅提升你的生产力!



最后,更多IT教程PDF下载,利用副业时间提高收入,转行就业指导等可以加入我的星球:

b6df77232f9024926b9720fb81c06de3.png

点击阅读原文,学习编程和AI

在本章中,我们将深入探讨基于块匹配的全景图像拼接技术,这是一种广泛应用于计算机视觉和图像处理领域的技术。在深度学习和机器学习的背景下,这种方法的实现与整合显得尤为重要,因为它们能够提升图像处理的效率和精度。下面,我们将会详细阐述相关知识点。 我们要了解什么是全景图像拼接。全景图像拼接是一种将多张有限视角的图像合并成一个宽视角或全方位视角图像的技术,常用于虚拟现实、地图制作、监控系统等领域。通过拼接,我们可以获得更广阔的视野,捕捉到单个图像无法覆盖的细节。 块匹配是全景图像拼接中的核心步骤,其目的是寻找两张图片中对应区域的最佳匹配。它通常包括以下几个关键过程: 1. **图像预处理**:图像的预处理包括灰度化、直方图均衡化、降噪等操作,以提高图像质量,使匹配更加准确。 2. **特征提取**:在每张图像上选择特定区域(块)并计算其特征,如灰度共生矩阵、SIFT(尺度不变特征变换)、SURF(加速稳健特征)等,这些特征应具备旋转、缩放和光照不变性。 3. **块匹配**:对于每一张图像的每个块,计算与另一张图像所有块之间的相似度,如欧氏距离、归一化互信息等。找到最相似的块作为匹配对。 4. **几何变换估计**:根据匹配对确定对应的几何关系,例如仿射变换、透视变换等,以描述两张图像之间的相对位置。 5. **图像融合**:利用估计的几何变换,对图像进行融合,消除重叠区域的不一致性和缝隙,生成全景图像。 在MATLAB环境中实现这一过程,可以利用其强大的图像处理工具箱,包括图像读取、处理、特征检测和匹配、几何变换等功能。此外,MATLAB还支持编程和脚本,方便算法的调试和优化。 深度学习和机器学习在此处的角色主要是改进匹配过程和图像融合。例如,通过训练神经网络模型,可以学习到更具鲁棒性的特征表示,增强匹配的准确性。同时,深度学习方法也可以用于像素级别的图像融合,减少拼接的失真和不连续性。 在实际应用中,我们需要注意一些挑战,比如光照变化、遮挡、动态物体等,这些因素可能会影响匹配效果。因此,往往需要结合其他辅助技术,如多视图几何、稀疏重建等,来提高拼接的稳定性和质量。 基于块匹配的全景图像拼接是通过匹配和融合多张图像来创建全景视图的过程。在MATLAB中实现这一技术,可以结合深度学习和机器学习的先进方法,提升匹配精度和图像融合质量。通过对压缩包中的代码和数据进行学习,你可以更深入地理解这一技术,并应用于实际项目中。
基于Python+OpenCV的全景图像拼接系统设计与实现 本系统的设计与实现基于Python和OpenCV,旨在提供一个高效、准确的全景图像拼接系统。系统的前台界面使用了最新的HTML5技术,使用DIV+CSS进行布局,使整个前台页面变得更美观,极大的提高了用户的体验。后端的代码技术选择的是PYTHON,PYTHON语言是当下最常用的编程语言之一,可以保证系统的稳定性和流畅性,PYTHON可以灵活的与数据库进行连接。 系统的数据使用的MYSQL数据库,它可以提高查询的速度,增强系统数据存储的稳定性和安全性。同时,本系统的图像拼接技术以OpenCV为核心,最大化提升图片拼接的质量。 本系统的设计与实现可以分为以下几个部分: 一、系统架构设计 本系统的架构设计主要基于Python和OpenCV,使用MYSQL数据库存储数据。系统的前台界面使用HTML5技术,后端使用PYTHON语言连接MYSQL数据库,实现图像拼接功能。 二、图像拼接算法 本系统使用OpenCV库实现图像拼接,OpenCV库提供了丰富的图像处理功能,可以实现图像拼接、图像识别、图像处理等功能。通过OpenCV库,可以实现高效、准确的图像拼接。 三、系统实现 本系统的实现主要基于Python和OpenCV,使用MYSQL数据库存储数据。系统的前台界面使用HTML5技术,后端使用PYTHON语言连接MYSQL数据库,实现图像拼接功能。同时,本系统还实现了用户认证、数据加密、数据备份等功能,以确保系统的安全和稳定性。 四、系统优点 本系统的优点有: * 高效:本系统使用OpenCV库实现图像拼接,可以实现高效的图像拼接。 * 准确:本系统使用OpenCV库实现图像拼接,可以实现准确的图像拼接。 * 安全:本系统实现了用户认证、数据加密、数据备份等功能,以确保系统的安全和稳定性。 * 灵活:本系统使用PYTHON语言,可以灵活的与数据库进行连接,实现灵活的图像拼接功能。 本系统的设计与实现可以提供一个高效、准确的全景图像拼接系统,为用户提供了一个方便、快捷的图像拼接体验。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值