ChatGLM模型解析:SFT+P-Tuning V2深度探究

note

  • GLM将针对不同类型下游任务的预训练目标统一为了自回归填空,结合了混合的注意力机制和新的二维位置编码。
  • 本文浅析sft,并基于GLM在广告描述数据集上进行sft+p-tuning代码的数据流讲解,图解了p-tuning的原理(拆分出来到下一篇博客中了)
  • 使用A100进行p-tuning v2后比较Rouge score 和 BLEU-4,并且对多个case进行测试,在垂直领域表现更好,但存在“知识遗忘”和重复回答内容的现象,还需后续改进。
文章目录

零、ChatGLM2模型

后面对chatglm2进行sft微调,这里顺带着先介绍下glm2:

  • chatglm-6b:https://github.com/THUDM/ChatGLM-6B
  • chatglm2-6b:https://github.com/THUDM/ChatGLM2-6B
  • chatglm130:https://github.com/THUDM/GLM-130B

  • 自回归空格填充任务:
    • 初始文本输入:x1, x2,x3,x4,x5,x6
    • 随机掩码mask
      • PartA 部分:x1,x2,M,x4,M ,其中M表示mask的跨度
      • PartB 部分: S,x5,x6,S,x3(刚才mask掉的那几坨,随机排序后,对起始位置加入token)
      • 拼接PartA和PartB
  • 自注意机制(chatglm在Q、K中加入了RoPE位置信息):

Q

=

W

q

X

K

=

W

k

X

V

=

W

v

X

Attention

(

Q

,

K

,

V

,

A

)

=

softmax

(

Q

K

T

d

k

)

V

\begin{aligned} Q & =W_q X \ K & =W_k X \ V & =W_v X \ \operatorname{Attention}(Q, K, V, A) & =\operatorname{softmax}\left(\frac{Q K^T}{\sqrt{d_k}}\right) V \end{aligned}

Q

K

V

Attention

(

Q

,

K

,

V

,

A

)

=

W

q

X

=

W

k

X

=

W

v

X

=

softmax

(

d

k

Q

K

T

)

V

  • mask:chatglm6b使用prefix-LM的mask,对于输入的前缀使用双向注意力,对于后续的生成部分则是causal mask
    • PartA部分内的各token可以互相注意到
    • PartB部分内的tokens可以注意到PartA和PartB中已经生成的token

    def get_masks(self, input_ids, past_key_values, padding_mask=None):
        batch_size, seq_length = input_ids.shape
        full_attention_mask = torch.ones(batch_size, seq_length, seq_length, device=input_ids.device)
        full_attention_mask.tril_()
        past_length = 0
        if past_key_values:
            past_length = past_key_values[0][0].shape[0]
        if past_length:
            full_attention_mask = torch.cat((torch.ones(batch_size, seq_length, past_length,
                                                        device=input_ids.device), full_attention_mask), dim=-1)
        if padding_mask is not None:
            full_attention_mask = full_attention_mask * padding_mask.unsqueeze(1)
        if not past_length and padding_mask is not None:
            full_attention_mask -= padding_mask.unsqueeze(-1) - 1
        full_attention_mask = (full_attention_mask < 0.5).bool()
        full_attention_mask.unsqueeze_(1)
        return full_attention_mask

一、Supervised fine-tuning

sft就是下面的第一个环节,使用指令数据做有监督精调 (supervised fine-tuning)。

1. 数据样本的准备

参考stanford_alpaca的sft:

  • 整理的数据有三列:instruction、input、output。
  • Instruction和input通过prompt组搞在一起,为sourse;output换为target
  • 把source和target和token.eos_token_id直接拼接在一起,这个时候暂时叫sentence。
  • 然后把sentence通过tokenizer转换成input_ids。
  • 最后一步,要把input_ids复制一份,叫labels。然后把labels前面的位置,即source对应的tokenid,全部变成-100。
  • 那么这个时候,一个面向sft任务的input_ids和labels就已经构造好了。

在这个任务里面,使用的就是transformers的
DataCollatorForSeq2Seq
。这个data_collator任务很简单:就是让每一个batch内的input_ids和labels都长度对齐。

def _tokenize_fn(strings: Sequence[str], tokenizer: transformers.PreTrainedTokenizer) -> Dict:
    """Tokenize a list of strings."""
    tokenized_list = [
        tokenizer(
            text,
            return_tensors="pt",
            padding="longest",
            max_length=tokenizer.model_max_length,
            truncation=True,
        )
        for text in strings
    ]
    input_ids = labels = [tokenized.input_ids[0] for tokenized in tokenized_list]
    input_ids_lens = labels_lens = [
        tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item() for tokenized in tokenized_list
    ]
    return dict(
        input_ids=input_ids,
        labels=labels,
        input_ids_lens=input_ids_lens,
        labels_lens=labels_lens,
    )


def preprocess(
    sources: Sequence[str],
    targets: Sequence[str],
    tokenizer: transformers.PreTrainedTokenizer,
) -> Dict:
    """Preprocess the data by tokenizing."""
    examples = [s + t for s, t in zip(sources, targets)]
    examples_tokenized, sources_tokenized = [_tokenize_fn(strings, tokenizer) for strings in (examples, sources)]
    input_ids = examples_tokenized["input_ids"]
    labels = copy.deepcopy(input_ids)
    for label, source_len in zip(labels, sources_tokenized["input_ids_lens"]):
        label[:source_len] = IGNORE_INDEX
    return dict(input_ids=input_ids, labels=labels)

2. stanford_alpaca的dataset类

class SupervisedDataset(Dataset):
    """Dataset for supervised fine-tuning."""

    def __init__(self, data_path: str, tokenizer: transformers.PreTrainedTokenizer):
        super(SupervisedDataset, self).__init__()
        logging.warning("Loading data...")
        list_data_dict = utils.jload(data_path)

        logging.warning("Formatting inputs...")
        prompt_input, prompt_no_input = PROMPT_DICT["prompt_input"], PROMPT_DICT["prompt_no_input"]
        sources = [
            prompt_input.format_map(example) if example.get("input", "") != "" else prompt_no_input.format_map(example)
            for example in list_data_dict
        ]
        targets = [f"{example['output']}{tokenizer.eos_token}" for example in list_data_dict]

        logging.warning("Tokenizing inputs... This may take some time...")
        data_dict = preprocess(sources, targets, tokenizer)

        self.input_ids = data_dict["input_ids"]
        self.labels = data_dict["labels"]

    def __len__(self):
        return len(self.input_ids)

    def __getitem__(self, i) -> Dict[str, torch.Tensor]:
        return dict(input_ids=self.input_ids[i], labels=self.labels[i])

3. 数据格式、计算loss的数据

简单分析hf的trainer:hugggingface自带的trainer类中参数如下:

    def __init__(
        self,
        model: Union[PreTrainedModel, nn.Module] = None,
        args: TrainingArguments = None,
        data_collator: Optional[DataCollator] = None,
        train_dataset: Optional[Dataset] = None,
        eval_dataset: Optional[Union[Dataset, Dict[str, Dataset]]] = None,
        tokenizer: Optional[PreTrainedTokenizerBase] = None,
        model_init: Optional[Callable[[], PreTrainedModel]] = None,
        compute_metrics: Optional[Callable[[EvalPrediction], Dict]] = None,
        callbacks: Optional[List[TrainerCallback]] = None,
        optimizers: Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None),
        preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None,
    )

hf自带的
trainer
中的
compute_loss
函数中,用到了标签平滑的正则化(将真实标签的概率分布进行平滑,减少模型过拟合):

对于上面
trainer
类的参数
data_collator
,对于encoder和decoder模型都是不同的:比如前者的bert模型,用于ner词性标注任务时:

BertForTokenClassification(
  (bert): BertModel(
    (embeddings): BertEmbeddings(
      (word_embeddings): Embedding(28996, 768, padding_idx=0)
      (position_embeddings): Embedding(512, 768)
      (token_type_embeddings): Embedding(2, 768)
      (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
      (dropout): Dropout(p=0.1, inplace=False)
    )
    (encoder): BertEncoder(
      (layer): ModuleList(
        (0-11): 12 x BertLayer(
          (attention): BertAttention(
            (self): BertSelfAttention(
              (query): Linear(in_features=768, out_features=768, bias=True)
              (key): Linear(in_features=768, out_features=768, bias=True)
              (value): Linear(in_features=768, out_features=768, bias=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
            (output): BertSelfOutput(
              (dense): Linear(in_features=768, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (intermediate): BertIntermediate(
            (dense): Linear(in_features=768, out_features=3072, bias=True)
            (intermediate_act_fn): GELUActivation()
          )
          (output): BertOutput(
            (dense): Linear(in_features=3072, out_features=768, bias=True)
            (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
            (dropout): Dropout(p=0.1, inplace=False)
          )
        )
      )
    )
  )
  (dropout): Dropout(p=0.1, inplace=False)
  (classifier): Linear(in_features=768, out_features=9, bias=True)
)

对于上面这种encoder模型的
data_collator
定义如下(比如我们要做文本分类,每个数据样本即对应一个文本序列+一个label):

from transformers import BertTokenizer
from torch.utils.data import DataLoader

tokenizer = BertTokenizer.from_pretrained('bert-base-cased')

class TextClassificationDataset(Dataset):
    def __init__(self, texts, labels, max_length):
        self.texts = texts
        self.labels = labels
        self.max_length = max_length
    
    def __len__(self):
        return len(self.texts)
    
    def __getitem__(self, index):
        text = self.texts[index]
        label = self.labels[index]
        input_ids, attention_mask = self.encode_text(text)
        return {'input_ids': input_ids, 'attention_mask': attention_mask, 'label': label}
    
    def encode_text(self, text):
        input_ids = tokenizer.encode(text, add_special_tokens=True, max_length=self.max_length, truncation=True)
        attention_mask = [1] * len(input_ids)
        padding_length = self.max_length - len(input_ids)
        input_ids = input_ids + [0] * padding_length
        attention_mask = attention_mask + [0] * padding_length
        return input_ids, attention_mask

def collate_fn(batch):
    input_ids = [item['input_ids'] for item in batch]
    attention_mask = [item['attention_mask'] for item in batch]
    labels = [item['label'] for item in batch]
    label_map = {label: i for i, label in enumerate(set(labels))}
    encoded_labels = [label_map[label] for label in labels]
    return {'input_ids': input_ids, 'attention_mask': attention_mask, 'labels': encoded_labels}

train_dataset = TextClassificationDataset(texts=train_texts, labels=train_labels, max_length=128)
train_dataloader = DataLoader(train_dataset, batch_size=32, collate_fn=collate_fn)

后者的gpt是next token prediction,以chatglm为栗子,特点是加入了ROPE旋转位置编码、使用RMSNorm正则化等操作:

ChatGLMForConditionalGeneration(
  (transformer): ChatGLMModel(
    (embedding): Embedding(
      (word_embeddings): Embedding(65024, 4096)
    )
    (rotary_pos_emb): RotaryEmbedding()
    (encoder): GLMTransformer(
      (layers): ModuleList(
        (0-27): 28 x GLMBlock(
          (input_layernorm): RMSNorm()
          (self_attention): SelfAttention(
            (query_key_value): QuantizedLinear()
            (core_attention): CoreAttention(
              (attention_dropout): Dropout(p=0.0, inplace=False)
            )
            (dense): QuantizedLinear()
          )
          (post_attention_layernorm): RMSNorm()
          (mlp): MLP(
            (dense_h_to_4h): QuantizedLinear()
            (dense_4h_to_h): QuantizedLinear()
          )
        )
      )
      (final_layernorm): RMSNorm()
    )
    (output_layer): Linear(in_features=4096, out_features=65024, bias=False)
  )
)

对于上面这种decoder模型,我们的
data_collator
定义如下(
TextGenerationDataset
对输入文本进行编码,并且将目标序列往后移动一位以便预测,dataloader将数据集分为多个mini-batch,
collate_fn
函数对每个mini-batch数据进行自定义组合):

from transformers import GPT2Tokenizer
from torch.utils.data import Dataset, DataLoader
from torch.nn.utils.rnn import pad_sequence

tokenizer = GPT2Tokenizer.from_pretrained('gpt2')

class TextGenerationDataset(Dataset):
    def __init__(self, texts, max_length):
        self.texts = texts
        self.max_length = max_length
    
    def __len__(self):
        return len(self.texts)
    
    def __getitem__(self, index):
        text = self.texts[index]
        input_ids, attention_mask = self.encode_text(text)
        return {'input_ids': input_ids, 'attention_mask': attention_mask}
    
    def encode_text(self, text):
        input_ids = tokenizer.encode(text, add_special_tokens=True, max_length=self.max_length, truncation=True)
        attention_mask = [1] * len(input_ids)
        padding_length = self.max_length - len(input_ids)
        input_ids = input_ids + [tokenizer.pad_token_id] * padding_length
        attention_mask = attention_mask + [0] * padding_length
        return input_ids, attention_mask

def collate_fn(batch):
    input_ids = [torch.tensor(item['input_ids'], dtype=torch.long) for item in batch]
    attention_mask = [torch.tensor(item['attention_mask'], dtype=torch.long) for item in batch]
    input_ids = pad_sequence(input_ids, batch_first=True, padding_value=tokenizer.pad_token_id)
    attention_mask = pad_sequence(attention_mask, batch_first=True, padding_value=0)
    return {'input_ids': input_ids, 'attention_mask': attention_mask}

train_dataset = TextGenerationDataset(texts=train_texts, max_length=128)
train_dataloader = DataLoader(train_dataset, batch_size=32, collate_fn=collate_fn)

在计算loss时也会将
input_id
向后移动1位后作为label,比如下面chatglm2-6b的源码:

  • lm_logits
    :初始
    [batch_size, sequence_length, vocab_size]
    ,减1是将最后一个位置的预测结果去掉
  • labels
    :初始
    [batch_size, sequence_length]
    ,下面代码的
    labels[..., 1:]
    即第1个(0开始计算)维度从位置1开始取
  • 最后计算
    nll_loss

    smoothed_loss
    的加权和,作为loss值
    def __call__(self, model_output, labels, shift_labels=False):
        logits = model_output["logits"] if isinstance(model_output, dict) else model_output[0]
        if shift_labels:
            logits = logits[..., :-1, :].contiguous()
            labels = labels[..., 1:].contiguous()

        log_probs = -nn.functional.log_softmax(logits, dim=-1)
        if labels.dim() == log_probs.dim() - 1:
            labels = labels.unsqueeze(-1)

        padding_mask = labels.eq(self.ignore_index)
        # In case the ignore_index is -100, the gather will fail, so we replace labels by 0. The padding_mask
        # will ignore them in any case.
        labels = torch.clamp(labels, min=0)
        nll_loss = log_probs.gather(dim=-1, index=labels)
        # works for fp16 input tensor too, by internally upcasting it to fp32
        smoothed_loss = log_probs.sum(dim=-1, keepdim=True, dtype=torch.float32)

        nll_loss.masked_fill_(padding_mask, 0.0)
        smoothed_loss.masked_fill_(padding_mask, 0.0)

        # Take the mean over the label dimensions, then divide by the number of active elements (i.e. not-padded):
        num_active_elements = padding_mask.numel() - padding_mask.long().sum()
        nll_loss = nll_loss.sum() / num_active_elements
        smoothed_loss = smoothed_loss.sum() / (num_active_elements * log_probs.shape[-1])
        return (1 - self.epsilon) * nll_loss + self.epsilon * smoothed_loss

4. glm中的preprocess_function

  • 和上面描述的一样
  • input_ids = a_ids + b_ids + [tokenizer.eos_token_id]
  • labels = [tokenizer.pad_token_id] * context_length + b_ids + [tokenizer.eos_token_id]
  • 然后对刚才的
    input_ids

    labels
    的结尾进行padding
def preprocess_function_train(examples):
    max_seq_length = data_args.max_source_length + data_args.max_target_length + 1

    model_inputs = {
        "input_ids": [],
        "labels": [],
    }
    for i in range(len(examples[prompt_column])):
        if examples[prompt_column][i] and examples[response_column][i]:
            query, answer = examples[prompt_column][i], examples[response_column][i]

            history = examples[history_column][i] if history_column is not None else None
            prompt = tokenizer.build_prompt(query, history)

            prompt = prefix + prompt
            a_ids = tokenizer.encode(text=prompt, add_special_tokens=True, truncation=True,
                                     max_length=data_args.max_source_length)
            b_ids = tokenizer.encode(text=answer, add_special_tokens=False, truncation=True,
                                     max_length=data_args.max_target_length)

            context_length = len(a_ids)
            input_ids = a_ids + b_ids + [tokenizer.eos_token_id]
            labels = [tokenizer.pad_token_id] * context_length + b_ids + [tokenizer.eos_token_id]
            
            pad_len = max_seq_length - len(input_ids)
            input_ids = input_ids + [tokenizer.pad_token_id] * pad_len
            labels = labels + [tokenizer.pad_token_id] * pad_len
            if data_args.ignore_pad_token_for_loss:
                labels = [(l if l != tokenizer.pad_token_id else -100) for l in labels]

            model_inputs["input_ids"].append(input_ids)
            model_inputs["labels"].append(labels)

    return model_inputs

二、P-Tuning v2的数据流

项目:基于广告数据集,chatglm2的p-tuning v2微调

背景:sft指令微调时为了加快训练, Parameter-Efficient Model Adaptation,所以经常伴随着prompt tuning、lora tuning、p-tuning v2等peft操作。下面以chatglm2官方的p-tuning v2为例介绍。

1. 数据准备

ADGEN 数据集任务为根据输入(content)生成一段广告词(summary)。

{
    "content": "类型#上衣*版型#宽松*版型#显瘦*图案#线条*衣样式#衬衫*衣袖型#泡泡袖*衣款式#抽绳",
    "summary": "这件衬衫的款式非常的宽松,利落的线条可以很好的隐藏身材上的小缺点,穿在身上有着很好的显瘦效果。领口装饰了一个可爱的抽绳,漂亮的绳结展现出了十足的个性,配合时尚的泡泡袖型,尽显女性甜美可爱的气息。"
}

2. P-Tuning v2微调

  • train.sh
    中的
    PRE_SEQ_LEN

    LR
    分别是 soft prompt 长度和训练的学习率,可以进行调节以取得最佳的效果。
  • P-Tuning-v2 方法会冻结全部的模型参数,可通过调整
    quantization_bit
    来被原始模型的量化等级,不加此选项则为 FP16 精度加载。
  • glm2源码中的
    data_collator
    使用了transformer的
    DataCollatorForSeq2Seq
    ,其实很多时候直接用这个就行了,不用像上面1.1中的stanford_alpaca中一样去自定义:
from transformers import DataCollatorForSeq2Seq
    data_collator = DataCollatorForSeq2Seq(
        tokenizer,
        model=model,
        label_pad_token_id=label_pad_token_id,
        pad_to_multiple_of=None,
        padding=False
    )

经过A100的2个半小时微调训练完毕后,我们对微调的模型进行评估:

***** predict metrics *****
  predict_bleu-4             =     7.7373
  predict_rouge-1            =    29.6457
  predict_rouge-2            =     6.5032
  predict_rouge-l            =    24.1108
  predict_runtime            = 0:38:10.35
  predict_samples            =       1070
  predict_samples_per_second =      0.467
  predict_steps_per_second   =      0.467

3. 模型推理

在 P-tuning v2 训练时模型只保存 PrefixEncoder 部分的参数(继承了
trainer

PrefixTrainer
类,重写了父类的
_save
函数),所以在推理时需要同时加载原 ChatGLM2-6B 模型以及 PrefixEncoder 的权重,因此需要指定
evaluate.sh
中的参数:

--model_name_or_path THUDM/chatglm2-6b
--ptuning_checkpoint $CHECKPOINT_PATH

如果是,只需要跟之前一样设定
model_name_or_path

--model_name_or_path $CHECKPOINT_PATH

评测指标为中文 Rouge score 和 BLEU-4。

4. 模型部署

和最初的推理略不同,加载p-tuning的checkpoint,有以下修改:

model_path = "../model/chatglm2-6b-int4"
# 1. first inference
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
# model = AutoModel.from_pretrained(model_path, trust_remote_code=True).float()

# 2. p-tuning v2 inference
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True, pre_seq_len=128)
model = AutoModel.from_pretrained(model_path, config=config, trust_remote_code=True).to("cuda")
CHECKPOINT_PATH = "../ptuning/output/adgen-chatglm2-6b-pt-128-2e-2/checkpoint-3000"
# tokenizer = AutoTokenizer.from_pretrained(CHECKPOINT_PATH, trust_remote_code=True)   # i add
prefix_state_dict = torch.load(os.path.join(CHECKPOINT_PATH, "pytorch_model.bin"))
new_prefix_state_dict = {}
for k, v in prefix_state_dict.items():
    if k.startswith("transformer.prefix_encoder."):
        new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v
model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict)

回到最初我们的广告词生成任务,我们测试如下,对于item的特点能较好描述:

用户:类型#裙*版型#显瘦*风格#文艺*风格#简约*图案#印花*图案#撞色*裙下摆#压褶*裙长#连衣裙*裙领型#圆领
��#撞色*裙下摆#压褶*裙长#连衣裙*裙领型#圆领

ChatGLM:这条裙子非常百搭,可以搭配各种不同的上衣,也可以作为连衣裙来穿。
它的版型比较有型,可以显瘦,而且它属于比较文艺的风格,可以满足你的小女人的气质。
这条裙子的风格比较简约,不繁杂,适合各种不同的搭配。它属于长款裙,可以遮住你的腿型,让你看起来更加高挑。

但是遗忘的特点较为明显,比如问他你是谁,甚至忘记自己是chatglm了(没微调之前能正常回答):

用户:你是谁
你是谁

ChatGLM:你是谁,你是一个人,你是一个有故事的人。

再比如问些生活问题,如何打好羽毛球,它疯狂回答多参加羽毛球活动,重复了n次:

用户:如何打好羽毛球
如何打好羽毛球

ChatGLM:想要打好羽毛球,需要多方面的努力与坚持,具体可以参考下述建议:<UNK>,多参加羽毛球比赛,可以提高专业水平;多<UNK>,可以提高身体素质;多<UNK>,可以提高专业水平;多<UNK>,可以提高身体素质;多<UNK>,可以提高专业水平;多<UNK>,可以提高身体素质;多<UNK>,可以提高专业水平;多<UNK>,可以提高专业水平;多<UNK>,可以提高身体素质;多<UNK>,可以提高专业水平;多<UNK>,可以提高专业水平;多<UNK>,可以提高身体素质;多<UNK>,可以提高专业水平;多<UNK>,可以提高专业水平;多<UNK>,可以提高专业水平;多参加羽毛球活动,可以提高专业水平;多参加羽毛球比赛,可以提高专业水平;多参加羽毛球活动,可以提高专业水平;多参加羽毛球活动,可以提高专业水平;多参加羽毛球活动,可以提高专业水平;多参加羽毛球活动,可以提高专业水平;多参加羽毛球活动,可以提高专业水平;多参加羽毛球活动,可以提高专业水平;多参加羽毛球活动,可以提高专业水平;多参加羽毛球活动,可以提高专业水平;多参加羽毛球活动,可以提高专业水平;多参加羽毛球活动,可以提高专业水平;多参加羽毛球活动,可以提高专业水平;多参加羽毛球活动,可以提高专业水平;多参加羽毛球活动,可以提高专业水平;多参加羽毛球活动,可以提高专业水平;多参加羽毛球活动,可以提高专业水平;多参加羽毛球活动,可以提高专业水平;多参加羽毛球活动,可以提高专业水平;多参加羽毛球活动,可以提高专业水平;多参加羽毛球活动,可以提高专业水平;多参加羽毛球活动,可以提高专业水平;多参加羽毛球活动,可以提高专业水平;多参加羽毛球活动,可以提高专业水平;多参加羽毛球活动,可以提高专业水平;多参加羽毛球活动,可以提高专业水平;多参加羽毛球活动,可以提高专业水平;多参加羽毛球活动,可以提高专业水平;多参加羽毛球活动,可以提高专业水平;多参加羽毛球活动,可以提高专业水平;多参加羽毛球活动,可以提高专业水平;多参加羽毛球活动,可以提高专业水平;多参加羽毛球活动,可以提高专业水平;多参加羽毛球活动,可以提高专业水平;多参加羽毛球活动,可以提高专业水平;多参加羽毛球活动,可以提高专业水平;多参加羽毛球活动,可以提高专业水平;多参加羽毛球活动,可以提高专业水平。

没微调之前能耐心回答,并且分点作答:

三、垂直领域训练注意事项

如PowerLawGLM的训练。(怎么做法律条文的准确输出)

  • 对pretrained 进行法文垂直场景的增量微调。 收集大量的法文数据(网络,离线):对GLM130基座模型进行增量预训练,先把垂直场景的法律条文数据注入到pretrained 模型。
  • 对齐法律场景对齐:用监督数据做SFT微调(百万级真实法律条文的数据)。
  • 解决出现的幻觉问题(输出不存在的法律条文): (重点工程优化,比如做基于检索的条文输出)可参考Langchain+LLM的输出方式(外挂知识库)。

Reference

[1] GLM: General Language Model Pretraining with Autoregressive Blank Infilling ,ACL2022

[2] https://aclanthology.org/2022.acl-long.26.pdf

[3]
GLM论文精读-自回归填空的通用语言模型

[4]
【transformers源码阅读】大模型的sft clm mlm的异同点——transformers是如何处理这3种任务

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值