- 博客(173)
- 资源 (10)
- 收藏
- 关注
原创 大模型Agent的八种核心模式解析
本文探讨了8种大型语言模型(LLM)智能体的核心应用模式。反思模式通过用户反馈优化输出质量;工具使用模式整合外部API扩展功能;ReAct模式结合推理与行动形成闭环;规划模式将复杂任务分解执行;多智能体模式通过分工协作完成任务。这些模式展示了LLM从基础文本生成向复杂问题解决的演进路径,为构建高级AI应用提供了方法论框架。
2025-06-04 13:20:18
695
原创 面试经验 对常用 LLM 工具链(如 LlamaFactory)的熟悉程度和实践经验
我理解它主要是一个集成了从数据处理、模型预训练(PT)、有监督微调(SFT)、奖励模型训练(RM)、人类偏好对齐(如 DPO、PPO、KTO)到模型推理和导出等全流程的命令行工具。这个统一的接口,配合配置文件或者直接的命令行参数,就能方便地调用和管理各种复杂的 LLM 操作,大大简化了开发和实验的流程。这样导出的模型就是包含 LoRA 权重的完整模型,可以直接用于推理,并且如果配置了量化,模型体积和推理延迟也会有所优化。通过这样的准备,可以更好地应对技术面试中关于 LLM 工具链的提问。
2025-06-03 18:20:59
1163
原创 对 `llamafactory-cli api -h` 输出的详细解读
是 LlamaFactory 项目提供的命令行接口工具,它允许用户通过命令行参数来配置和运行大型语言模型的各种任务,如预训练(PT)、有监督微调(SFT)、奖励模型训练(RM)、基于人类反馈的强化学习(PPO、DPO、KTO)以及模型推理和导出。首先,命令输出的第一行是一个启动时的信息日志,表明程序已检测到并设置使用 CUDA(NVIDIA GPU)作为 DeepSpeed 加速器。这不是一个可配置的 API 参数,而是环境检测的结果。接下来是usage部分,展示了命令的基本用法和所有可选参数。
2025-06-03 17:53:02
889
原创 越来越多的算力公司、越来越多的芯片公司、可是你们对抗不过周期。
融入了“从传统算力租赁到高级封装接口服务”这一关键市场转变后,整个预测逻辑链更加丰满和具有说服力。这一系列预测描绘了从2025年下半年开始,在AI算力应用效率提升和市场供给模式演进(从传统租赁到高级封装接口)的双重驱动下,叠加潜在的市场滞胀环境,将如何像多米诺骨牌一样,逐层冲击现有市场格局,引发从行业巨头估值调整到新兴企业深陷流动性危机,再到整个芯片市场深度洗牌的连锁反应。:它极大地提高了市场对算力服务成熟度、易用性、集成度和综合解决方案能力的要求,同时也加剧了头部集中效应。
2025-06-03 15:04:22
649
原创 KAG进化论:从知识增强到Ai agent超级智能体+MOE大模型将如何引爆下一代AI?(开源预告解读)
KAG描绘的“超级智能体 + MOE专家模型”的蓝图,以及其即将到来的重磅开源,无疑为我们揭示了AI未来发展的一个激动人心的方向。这不仅仅是代码的开放,更是思想的碰撞和创新的催化。当然,从愿景到现实,挑战依然巨大。但正是这种勇于探索未知、敢于开放共享的精神,驱动着人工智能一次又一次地突破想象的边界。让我们共同关注KAG的后续进展,期待这场由知识增强、超级智能体和MOE大模型引领的AI新浪潮,将如何塑造我们的未来!你认为KAG的这一开源计划,最有可能在哪个行业率先掀起变革?欢迎在评论区留下你的看法!
2025-05-30 12:44:15
960
原创 KAG进化论:从知识增强到Ai AGENT超级智能体+MOE专家模型将如何引爆下一代AI?
今天,我们就来聊聊一个可能引爆下一代AI的开源项目——KAG (Knowledge Augmented Generation),以及它那令人热血沸腾的进化蓝图:一个超级智能体,搭载一颗MOE(Mixture of Experts)的强大“心脏”,并且,这套从数据到模型的完整解决方案,即将开源!这不仅仅是代码的开放,更是思想的碰撞和创新的催化。想象一下,一个由MOE大模型驱动的KAG超级智能体,它既有宏观的自主规划和适应能力,又有微观的专业化、高效率处理能力,这将是解决复杂知识密集型任务的“梦幻组合”。
2025-05-30 12:26:16
733
原创 打破认知壁垒重构科技驱动美好生活 大模型义务传播计划
fill:#333;color:#333;color:#333;fill:none;编写 CUDA Kernel (.cu)C编写 C++ 接口代码 (.cpp)编写 setup.py (使用 torch.utils.cpp_extension)编译生成 .so / .pyd 库Python 代码调用自定义 CUDA 函数PyTorch/TensorFlow 文档, Numba/CuPy/Triton 文档。阶段四是硬核的工程阶段,需要动手实践和对底层原理的深刻理解。
2025-05-28 14:05:59
1420
原创 AI算法工程师大厂面试宝典 (2025图文完整版):LLM/RAG简历+前沿技术深度剖析
大家好,我是你们的AI技术伙伴!🚀 2025年的AI浪潮比以往任何时候都更加汹涌!大模型(LLM)不再仅仅是语言的天才,它们正朝着**多模态理解、自主智能体(AI Agent)乃至模拟世界(World Models)**的方向飞速发展。对于有志于投身AI事业、冲击大厂的算法工程师来说,不仅要掌握核心的NLP、RAG技术,更要对这些前沿领域有所洞察。本文将基于一份优秀的AI算法工程师简历(已脱敏),模拟大厂面试场景,不仅覆盖核心技能,更会。
2025-05-26 18:43:24
815
原创 2025年开源大模型技术全景图
迈向2025年,开源大型语言模型(LLM)生态系统已不再仅仅是闭源模型的补充,而是成为推动AI创新与民主化的核心引擎。其技术全景展现了一个高度模块化、协作共生且快速演进的复杂网络。
2025-05-23 14:46:19
2499
4
原创 用算法实现 用统计的方式实现 用自然语言处理的方法实现 用大模型实现 专利精益化统计分析
我们可以从算法、统计、自然语言处理(NLP)和大型语言模型(LLM)这四个方面,探讨如何实现对专利社区、作者重要性以及共同作者贡献度的分析。
2025-05-23 10:29:33
1074
原创 构建基于全面业务数据的大数据与大模型企业护城河战略
在数字化浪潮和人工智能技术飞速发展的今天,对于“专精特新”型企业而言,如何利用自身积累的深厚行业知识和独特的业务数据,结合大数据分析与大模型能力,构建难以被复制的竞争壁垒(即“护城河”),是实现可持续增长和行业领导地位的核心议题。通过将企业独特的业务数据与这些通用能力相结合,进行针对性的微调和优化,可以打造出真正解决行业痛点、提升核心竞争力的“专有大模型”。基于企业全面的专精业务数据,通过预训练、微调或从头训练等方式,构建的针对特定行业问题或业务场景的大规模人工智能模型(如LLM、多模态模型等)。
2025-05-22 18:52:43
702
原创 构建基于全面业务数据的大数据与大模型企业护城河战略
在数字化浪潮和人工智能技术飞速发展的今天,对于“专精特新”型企业而言,如何利用自身积累的深厚行业知识和独特的业务数据,结合大数据分析与大模型能力,构建难以被复制的竞争壁垒(即“护城河”),是实现可持续增长和行业领导地位的核心议题。通过将企业独特的业务数据与这些通用能力相结合,进行针对性的微调和优化,可以打造出真正解决行业痛点、提升核心竞争力的“专有大模型”。基于企业全面的专精业务数据,通过预训练、微调或从头训练等方式,构建的针对特定行业问题或业务场景的大规模人工智能模型(如LLM、多模态模型等)。
2025-05-22 18:41:19
669
原创 国内互联网大厂大模型工程师面试指南 (含参考答案、公式、流程图 - 基于Qwen3架构技术)
“预归一化 (Pre-Normalization)”相比“后归一化 (Post-Normalization)”在训练大型Transformer时有何优势?: Qwen3 MoE模型的设计中,明确指出“不包含共享专家”并采用了“全局批次负载均衡损失”。: 请手写SwiGLU的数学表达式,并解释其门控机制如何帮助模型学习更复杂的模式。用户输入_query_plus_mode_flag_plus_budget。这样的门控激活函数,而不是传统的ReLU/GeLU?对每对_x_2j_x_2j_plus_1。
2025-05-21 12:20:20
330
原创 详细介绍Qwen3技术报告中提到的模型架构技术
详细介绍Qwen3技术报告中提到的一些主流模型架构技术,并为核心流程配上相关的LaTeX公式。这些技术都是当前大型语言模型(LLM)领域为了提升模型性能、训练效率、推理速度或稳定性而采用的关键组件。
2025-05-21 11:44:53
647
原创 Qwen3 技术报告硬核解读:不止更大,更会“思考”!阿里新一代大模型亮出哪些绝活?
它不仅在传统性能指标上达到了新的高度,更通过创新的“思考模式”与“思考预算”机制,为我们展现了大型语言模型在“智能涌现”和“可控性”方面的新可能。以前你可能需要针对不同任务切换不同的模型(比如聊天用A模型,推理用B模型),现在 Qwen3 一个模型就搞定了,它能根据你的问题或者你给的模板动态切换“大脑模式”!Qwen3 这次依然是“全家桶”模式,发布了一系列不同参数规模的模型,从 **0.6B 6亿 ** 到 **235B 2350亿 ** 参数,应有尽有。模型的“后天培养”同样重要。
2025-05-21 10:40:07
491
原创 基于Qwen3-7B FP8与基石智算打造高性能本地智能体解决方案
适合多语言对话、推理、代码生成和工具调用,结合BGE-m3支持RAG任务。24GB显存:通过FP8量化和异构计算,可高效运行Qwen3-7B、BGE-m3和工具调用。基石智算平台:提供GPU云服务和弹性扩容,支持分布式部署,邀请活动可降低成本。内容创作:结合检索和工具调用,生成高质量、个性化的内容,适用于旅游、教育、营销等场景。下一步建议测试部署:在RTX 3090或基石智算的gn8v-tee实例上使用vLLM部署Qwen3-7B FP8,监控显存和性能。
2025-05-20 18:19:39
885
原创 从复杂度到有序:大模型专家系统的进化之路——深入解析层次化专家模式
层次化混合专家模型(Hierarchical Mixture of Experts, HMoE)通过其精巧的多层结构,为构建更强大、更高效的大型AI模型带来了曙光。然而,要充分发挥HMoE的潜力,其损失函数的设计至关重要。它不仅需要驱动模型学习核心任务,更要引导层级结构的有效利用、专家的合理分工以及训练过程的稳定。本文将探讨如何“重新设计”HMoE的损失函数,以应对这些独特的挑战与机遇。基础层面: 应用成熟的通用正则化技术(L1/L2、Dropout)。损失函数设计层面: 精心设计和调权math。
2025-05-20 17:39:56
903
原创 从lightrag的prompt到基于openai Structured Outputs 的优化实现思路
然而,将大型语言模型(LLM)集成到这些系统中时,一个普遍存在的痛点便是如何确保 LLM 的输出能够稳定、可靠地遵循预定义的 JSON 格式。LightRAG 之所以被描述为一个配置和管理类,是因为它旨在提供一个灵活的框架,用户可以通过定义各种组件(如 LLM 调用器、解析器、数据加载器)并配置其参数来构建和定制复杂的 RAG 系统。的实现利用了现代 LLM 的 JSON 输出能力,相比原始的基于自定义分隔符的提示,显著提高了输出的可靠性、可解析性和整体方案的鲁棒性。这是一个非常好的工程实践。
2025-05-14 22:54:58
1338
原创 司法大模型构建指南
使模型能根据指令,从法律文档中提取或生成不同类型的摘要。裁判文书(含事实、理由、结果段落)、法律法规条文、合同文本。数据集构建:结构化摘要数据集:完整的裁判文书,其中明确区分了事实认定、法律分析(理由)、判决结果等部分。完整的判决书作为input。output根据指令要求提取或总结对应部分。"instruction": "请从以下判决书中提取原告起诉所依据的案件事实。","input": "[判决书全文]","output": "[判决书中的事实认定段落文本]"
2025-04-27 12:50:50
1198
1
原创 基于大模型底座重构司法信息系统
构建一个高效的法律智能体,特别是在基于RAG(Retrieval-Augmented Generation)架构的背景下,需要融合多种学科和领域的知识。以下是对法律智能体开发和应用所需核心基础知识的简要介绍,涵盖法律、人工智能、自然语言处理、数据管理和系统工程等方面。法律智能体的核心是服务于司法场景,因此需要深入理解法律体系和相关内容:法律智能体依赖NLP技术处理和生成法律文本,所需知识包括:RAG架构的核心是检索模块,需掌握以下知识:法律智能体需要AI技术支持任务适配和模型优化:法律智能体依赖高质量的数据
2025-04-26 22:26:06
960
原创 MoE架构解析:如何用“分治”思想打造高效大模型?
MoE架构的哲学启示或许比技术本身更深刻:它证明在追求通用智能的道路上,专业化分工与系统化协同可以并行不悖。就像人类文明的发展——从个体全能到社会分工,再到全球化协作。当AI架构开始借鉴人类社会的组织智慧,我们或许正在见证机器智能进化史上的"工业革命"。——Yoshua Bengio, 图灵奖得主。
2025-04-25 16:30:44
1028
原创 对于有前后逻辑依赖关系的长文本,切分时确实需要特别注意上下文的连续性,以便在召回后知识时能够尽量保留前后文的关联。
对于有前后逻辑依赖关系的长文本,切分时确实需要特别注意上下文的连续性,以便在召回后知识时能够尽量保留前后文的关联。
2025-03-28 18:43:23
978
1
原创 基于Jina AI的研究工作,探讨提升搜索质量的两大技术:长网页最优文本段提取与URL智能重排
XLM-RoBERTa是一个跨语言的Transformer模型,通过在大量多语言语料上进行训练,学习到了丰富的跨语言知识。模型的强大表示能力、迟分向量化的上下文信息保留、余弦相似度的相关性评估、滑动窗口的最优片段提取,以及Reranker v2的精准重排序,Jina AI提供了一套完整的解决方案,能够有效提升搜索质量。相比传统的Position Embeddings,RoPE具有更好的外推性,能够处理比训练时更长的文本序列。:计算问题与文本块之间的余弦相似度,用于评估文本块与问题的相关性。
2025-03-21 17:15:14
855
原创 DeepSearch/DeepResearch:基于Jina研究的网页片段提取与URL排序实践
如何利用**迟分(Late Chunking)**从长网页提取相关片段?如何通过**重排器(Reranker)**从数百个URL中筛选最优选项?基于“80-20”原则,Jina的研究强调搜索本质需求,经过迭代验证,显著提升了DeepSearch的质量。。Jina的研究通过迟分提取片段和Reranker排序URL,显著提升了DeepSearch的质量。这两个技术细节适用于RAG及其他搜索系统优化。。交流:在评论区留言,或访问Jina的GitHub!
2025-03-21 17:06:38
703
原创 从openai的Function calling到 mcp
从 OpenAI 的函数调用到模型上下文协议(MCP),技术发展反映了 AI 模型与外部系统交互方式的演进。以下是主要方面的详细解释,适合普通读者理解。OpenAI 的函数调用是其 API 的一部分,允许 AI 模型根据用户输入生成函数调用。这些调用由开发者处理,用于连接模型与外部工具或服务,例如天气 API 或数据库查询。它于 2023 年 6 月引入,基于 gpt-3.5-turbo-0613 模型。
2025-03-15 14:10:41
1002
原创 从LoRA(低秩适应)开始 多种LoRA变体
LoRA(低秩适应)是一种参数高效的微调技术,专门为生成式语言模型(如大型语言模型,LLM)设计。传统微调需要更新模型的所有参数,这对计算资源需求很高。LoRA通过添加低秩矩阵来近似权重矩阵的更新,仅需训练少量参数,从而降低计算和内存成本。例如,对于权重矩阵 ( W_0 ),LoRA引入两个低秩矩阵 ( A ) 和 ( B ),使得更新为 ( \Delta W = A B ),其中 ( A ) 和 ( B ) 的秩 ( r ) 远小于矩阵维度。
2025-03-15 13:53:31
716
原创 deepseek r1 or deepseek v3
Deepseek 的三种模式(V3、R1 和联网搜索)各有特点,适用于不同的任务场景。根据你的任务类型和需求,选择合适的模型可以提高效率和效果。如何选择 V3 还是 R1?深度思考模型 (R1)联网搜索 (RAG)
2025-02-17 16:27:16
877
原创 以 **DeepSeek-R1-Distill-Qwen-32B** 模型的部署为例,结合 `vLLM` 框架的实践日志,详细解析大模型服务化部署的核心参数配置与优化技巧
精度选择bfloat16平衡速度与显存消耗。显存管理:合理分配模型权重与 KV 缓存空间。并发优化:根据调整请求批处理策略。vLLM 凭借显存管理机制,显著提升了大模型的服务化效率,是生产环境部署的理想选择。
2025-02-10 17:15:12
1719
2
原创 Node.js怎么调用到打包的python文件呢
在 Node.js 中调用打包后的 Python 可执行文件(如 PyInstaller 生成的.exe。
2025-02-10 17:07:37
911
原创 100%离线部署!用Qwen2.5 14B+LightRAG为中国船舶打造安全私有知识库
🌟【100%离线部署!用Qwen2.5 14B+LightRAG为中国船舶打造安全私有知识库】🌟还在担心企业数据泄露?需要完全离线的智能知识库?中国船舶的领导看过来!💡今天分享一套,基于国产Qwen2.5 14B大模型 + LightRAG框架,安全性和性能双保障!
2025-02-10 11:45:30
1533
原创 [特殊字符]【算法进阶必备!5大经典算法思想,彻底搞懂递归、分治、贪心、动态规划、回溯!】[特殊字符]
🌟【算法进阶必备!5大经典算法思想,彻底搞懂递归、分治、贪心、动态规划、回溯!】🌟你是不是刷题时总被这些算法思想绕晕?🤯别慌!今天带你一次性搞懂递归、分治、贪心、动态规划和回溯,掌握这些核心思想,算法题再也不怕!💪。
2025-02-10 11:01:48
263
原创 GraphRAG索引过程生成的Parquet文件结果导入到Neo4j
功能目标:把GraphRAG产生的结果数据导入Neo4j图数据库,方便后续处理、分析与可视化,并且介绍了后续如何在Neo4j中进行数据可视化操作以及示例查询语句。实现方式:通过Python代码,先配置相关参数(如文件路径、Neo4j连接信息等),安装必要依赖,然后定义一系列函数及操作来读取Parquet文件数据,并分批次将数据以合适的Cypher语句插入到Neo4j数据库中,同时还创建了必要的索引和约束来保障数据的完整性和查询性能。定义了一个变量。
2024-12-02 18:00:10
1685
原创 graph rag都能做哪些事情
从提供的项目目录结构看,系统具备高复杂度和模块化的设计,可能用于大规模数据处理、知识图谱构建、自然语言处理等方面。以下是一些推理出的核心能力和应用场景:上述描述中的功能模块涵盖了强大的自然语言处理、知识图谱构建以及高级工作流管理能力。以下是进一步的整理和细化:通过这些模块,系统可以高效地完成从数据采集、知识图谱构建到高级任务调度的全流程工作,尤其在处理复杂文本分析任务和多关系网络分析方面具有显著优势。这种整合化设计不仅提高了系统的扩展性和适配性,还能够为特定行业场景(如航空管理或化工安全)提供针对性解决方案
2024-12-02 17:35:28
1136
原创 基于 RAG(检索增强生成)、KAG(知识感知生成)和 CoT(链式思维)的生成式语言模型驱动推荐系统
通过细化 RAG、KAG 和 CoT 模块,并结合多维度特征(如相似购物习惯人群购物趋势等),可以构建一个高度个性化、可解释且动态适应的生成式语言模型驱动推荐系统。该系统不仅能够提供精准的推荐,还能通过自然语言解释增强用户信任,适用于电商、内容推荐和社交媒体等多个应用场景。通过系统化的设计、优化和持续迭代,能够满足不断变化的用户需求,提升整体用户体验和业务指标。
2024-11-18 16:02:00
1250
原创 基于 RAG(检索增强生成)、KAG(知识感知生成)和 CoT(链式思维)的生成式语言模型驱动推荐系统
通过细化 RAG、KAG 和 CoT 模块,并结合多维度特征(如相似购物习惯人群购物趋势等),可以构建一个高度个性化、可解释且动态适应的生成式语言模型驱动推荐系统。该系统不仅能够提供精准的推荐,还能通过自然语言解释增强用户信任,适用于电商、内容推荐和社交媒体等多个应用场景。通过系统化的设计、优化和持续迭代,能够满足不断变化的用户需求,提升整体用户体验和业务指标。
2024-11-18 15:50:30
518
原创 在openi平台 基于华为顶级深度计算平台 openmind 动手实践
是一个功能强大的深度学习开发套件,旨在提供简洁且易用的API,帮助开发者高效地进行深度学习模型的预训练、微调和推理等任务。无论是模型的开发、优化还是实际应用,都能为开发者提供全面的支持。它支持与主流深度学习框架(如PyTorch和MindSpore)的兼容,同时还原生支持昇腾NPU处理器,能够为开发者提供更高效的计算性能和优化能力。
2024-11-15 16:54:35
1706
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人