这道题方法很明显,但是前前后后一共浪费了两天的时间才算过了,就在于虽然了解了Dijkstra算法,但是自己实现起来真的是漏洞百出,所以还是学会了一个算法之后一定要多练习啊啊啊啊啊啊啊!
题解
以Z为源节点,用Dijkstra求Z和其他节点的最短路径,然后输出有大写标记的路径最短的节点。
这里我的Dijkstra并没有用优先队列(因为还不熟悉手写堆来构造一个priority_queue&&也不会使用c++的STL,不宜妄自菲薄不宜妄自菲薄……),所以是每次都扫一下所有的节点,找到还没遍历过的并且dis最小的(假装实现了优先队列选出最合适的下一个节点的功能)。这里的一些数字65什么的都是为了把字母根据ASCII码变成下标,存图用的。
然后一开始初始化vis 和dis数组的时候用的memset函数,然而出了大问题!就是初始化的数莫名其妙的,因为他是一个字节一个字节的初始化的(具体的兄弟们自行百度吧),总之最好用的是全都初始化为0-----memset(arr,0,sizeof(arr)); 后来还不是被迫用的for遍历……菜到不行,但是自己最后能做出来还是很开心哒(也许这就是编程的魅力之一吧)
题目描述就不说了
代码如下
/*
ID: 15659801
LANG: C
TASK: comehome
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#define inf 1000000
int n,ans;
int map[61][61];
int dis[61];
int vis[61];
void scanff()
{
int i,w,j;
char a,b;
for(i=0; i<61; i++)
for(j=0; j<61; j++)
map[i][j]=inf;
scanf("%d",&n);
for(i=0; i<n; i++)
{
a=getchar();
scanf("%c %c %d",&a,&b,&w);
if(w<map[a-65][b-65])
{
map[a-65][b-65]=w;
map[b-65][a-65]=w;
}
}
for(i=0; i<61; i++)
{
for(j=0; j<61; j++)
if(map[i][j]==inf)
{
map[i][j]=0;
}
}
}
void dijkstra(int x)
{
int i;
for(i=0; i<61; i++)
dis[i]=inf;
dis[x]=0;
while(x!=-1)
{
vis[x]=1;
for(i=0; i<61; i++)
if(map[x][i])
{
map[i][x]=0;
if(dis[x]+map[x][i]<dis[i])
dis[i]=dis[x]+map[x][i];
}
int mind=inf,minx=-1;
for(i=0;i<61;i++)
if(vis[i]==0&&dis[i]<mind)
{
mind=dis[i];
minx=i;
}
x=minx;
}
}
int main ()
{
freopen ("comehome.in", "r",stdin);
freopen ("comehome.out", "w",stdout);
scanff();
dijkstra(25);
int i,mind=inf;
int minc;
for(i=0; i<61; i++)
{
if(i<25&&i>=0&&dis[i]<mind)
{
mind=dis[i];
minc=i;
}
}
printf("%c %d\n",minc+65,mind);
fclose(stdin);
fclose(stdout);
exit (0);
}