题目描述:
现在是晚餐时间,而母牛们在外面分散的牧场中。 农民约翰按响了电铃,所以她们开始向谷仓走去。 你的工作是要指出哪只母牛会最先到达谷仓(在给出的测试数据中,总会有且只有一只速度最快的母牛)。 在挤奶的时候(晚餐前),每只母牛都在她自己的牧场上,一些牧场上可能没有母牛。 每个牧场由一条条道路和一个或多个牧场连接(可能包括自己)。 有时,两个牧场(可能是字母相同的)之间会有超过一条道路相连。 至少有一个牧场和谷仓之间有道路连接。 因此,所有的母牛最后都能到达谷仓,并且母牛总是走最短的路径。 当然,母牛能向着任意一方向前进,并且她们以相同的速度前进。 牧场被标记为’a’..’z’和’A’..’Y’,在用大写字母表示的牧场中有一只母牛,小写字母中则没有。 谷仓的标记是’Z’,注意没有母牛在谷仓中。
INPUT FORMAT
第 1 行: 整数 P(1<= P<=10000),表示连接牧场(谷仓)的道路的数目。
第 2 ..P+1行: 用空格分开的两个字母和一个整数:
被道路连接牧场的标记和道路的长度(1<=长度<=1000)。
SAMPLE INPUT
5
A d 6
B d 3
C e 9
d Z 8
e Z 3
OUTPUT FORMAT
单独的一行包含二个项目: 最先到达谷仓的母牛所在的牧场的标记,和这只母牛走过的路径的长度。
SAMPLE OUTPUT
B 11
解题思路:
这题就是求到Z的单源最短路问题,用dijkstra算法即可。注意只有A-Y的才算,a-z的不算。
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<math.h>
#include<algorithm>
using namespace std;
#define V 100
#define INF 99999999
int P,d[V],used[V],cost[V][V];
int min(int a,int b){
return a<b?a:b;
}
void dijkstra(int s){
fill(d,d+V,INF);
fill(used,used+V,0);
d[s]=0;
while(1){
int v=-1;
for(int i=0;i<V;i++){
if(!used[i]&&(v==-1||d[i]<d[v]))v=i;
}
if(v==-1)break;
used[v]=1;
for(int i=0;i<V;i++){
d[i]=min(d[i],d[v]+cost[v][i]);
}
}
}
int main(){
FILE *fin = fopen ("comehome.in", "r");
FILE *fout = fopen ("comehome.out", "w");
fscanf(fin,"%d\n",&P);
char a,b;
int c;
for(int i=0;i<V;i++){
for(int j=0;j<V;j++){
cost[i][j]=INF;
if(i==j)cost[i][j]=0;
}
}
for(int i=0;i<P;i++){
fscanf(fin,"%c %c %d\n",&a,&b,&c);
cost[a-'A'][b-'A']=min(cost[a-'A'][b-'A'],c);
cost[b-'A'][a-'A']=min(cost[b-'A'][a-'A'],c);
}
dijkstra(25);
int ans=INF;
char letter=0;
for(int i=0;i<25;i++){
if(ans>d[i]){
ans=d[i];
letter=i;
}
}
fprintf(fout,"%c %d\n",letter+'A',ans);
exit(0);
}