多项式长除法

本文介绍了多项式长除法的基本概念及操作步骤,包括如何进行有序书写、分子和分母的定义、具体的操作方法以及如何处理余项和缺項的情况,并通过实例详细展示了整个过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

转自https://www.shuxuele.com/algebra/polynomials-division-long.html

多项式长除法

多项式看起来像这样:

多项式例子
多项式例子
这个多项式有 3 项

除法

多项式除法

有时候可以这样做多项式除法

但有时用 "长除" 会比较合适(与数字长除法相似)

分子和分母

每部分的多项式有都有名字:

多项式分子分母

  • 上面的多项式叫分子
  • 下面的多项式叫分母

来帮你记住,想象:妈妈抱着孩子在身体上面。

方法

多项式长除

整整齐齐的写下来:

多项式长除

  • 先写分母,
  • 然后在右边写 ")",
  • 再写分子,上面画一条线

 

两个多项式的项都要"以从大到小的次数排列"(大指数――像 x2 里的 "2"――的项放在前面)。

然后:

重复 
  • 把分子的第一项除以分母的第一项,把结果放进答案里。
  • 把分母乘以上面的答案,把结果写在分子下面
  • 相减成为新的多项式
 用这新的多项式重复以上的运算

例解会比较清楚!

例子:

多项式长除

整齐地写下来,如下,然后逐步去解(按 play):

检测答案:

把答案乘以下面的多项式,结果应该是上面的多项式:

多项式长除 a 对

余项

上面的例子刚好可以整除,但并不是时常都这样!看看这个:

做完以后还剩下 "2",这便是 "余项"。

余项是除完之后剩下的项。

但我们还是得到了答案:把余项除以下面的多项式写在旁边作为答案的一部分,像这样:

多项式长除 b

"缺"項

多项式里可能有"空缺的項"(例子:可能有 x3,但 没有 x2)。如是这样,你可以留下空格,或写下系数为零的缺項。

例子:

多项式长除 c

写下以 "0" 为缺項的系数,然后照以上的步骤去解(按 play):

看到在 "3x3"  的位置我们放了一个空格吗?

多元(多于一个变量)

上面讲的是一元多项式――只有一个变量(x)――的除法,但同样的方法也适用于多元多项式――多于一个变量(例如 x 和 y)。

例子:

多项式长除 d

### 矩阵多项式除法计算方法 对于矩阵多项式除法,这一过程类似于标量多项式除法,但涉及到的是矩阵运算。假设存在两个矩阵多项式 \(A(s)\) 和 \(B(s)\),其中 \(A(s)\) 是被除数而 \(B(s)\) 是除数。 #### 定义与准备阶段 定义两个矩阵多项式如下: \[ A(s)=\sum_{i=0}^{n}{a_is^i}, B(s)=\sum_{j=0}^{m}{b_js^j}\] 这里 \(s\) 表示变量,\(a_i, b_j\) 分别代表对应的系数矩阵[^1]。 为了简化说明,假定 \(deg(A)> deg(B)\),即分子的最高次数大于分母的最大次幂;如果情况相反,则商为零向量,余项等于原多项式本身。 #### 计算步骤展示 通过不断减少被除式的阶数来逐步求解直到剩余部分小于除子的程度为止。具体操作可以描述为寻找合适的倍率使得每次相减后的结果尽可能低阶。 ```matlab function [Q,R]=mpolyldiv(A,B) % MPOLYL_DIV Matrix Polynomial Long Division. % % Q and R are the quotient and remainder of dividing matrix polynomials. if size(A,2)<size(B,2), error('The degree of dividend must be no less than that of divisor.'); end [n,m]=size(B); q=zeros(n,n); % Initialize Quotient as zero matrices with appropriate dimensions r=A; % Initially set Remainder equal to Dividend while ~isempty(r)&&~all(all(abs(triu(r,-(length(size(r))-1))))<eps*norm(B,'fro')) d=max(find(sum(diag(flipud(r))~=0))); % Find leading term index in current r c=r(d,:)/B(end,:); % Compute coefficient for this step q=q+c; % Accumulate into overall quotient r=r-diag(c)*B; % Subtract product from running total end R=r; ``` 上述代码实现了基本逻辑框架,在实际应用中可能还需要考虑更多细节处理如数值稳定性等问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值