树状数组

一个重要辅助函数

int lowbit(int t)       
{
      retrun  t & (-t);
	  //return t&(~t+1);    -t = ~t + 1
 } 
     //-t=~t+1   取t最低位的1
	 //-t 代表t的负数 计算机中负数使用对应的正数的补码来表示
     //例如 :
     // t=6(0110) 此时 k=1
     //-t=-6=(1001+1)=(1010)
     // t&(-t)=(0010)=2=2^1
         

树状数组的原理
树状数组约等于前缀和,可以说是一种特别的前缀和。它的预处理和区间操作(如区间求和)都是基于二进制实现的。
怎样基于二进制呢,例如6,它的二进制表示为110,那么c[6]存的值就为a[5] +a[6]的和,为什么,再看一看5得二进制表示101。可能还是懵逼,那再看c[44],44的二进制表示为101100,c[44] = a[44] + a[43] + a[42] + … +a[40],而40的二进制表示为101000。不难发现c[i]存的值为
a[i] – a[i - lowbit(i)]的和。
修改、求和操作
单点操作

//原数组a[i],数组长度0 - n, 把a[l]的值加res,更新树状数组c[i]的操作
void up(int l, int n, int res){
    for(int i = l; i <= n; i += i & (-i))
    c[i] += res;
    return; 
}

求和操作

//求原素组a[i]区间[1 , l]的和
int sum(int l){
    int tmp = 0;
    for(int i = r; i > 0; i -= i & (-i))
    tmp += c[i];
    return tmp;
}

//求原素组a[i]区间[l , r]的和
int query(int l, int r){
   return sum(r) - sum(l - 1);
}

二维树状数组

单点修改

void up(int x,int y,int res){  
        for(int i = x, i <= n; i += lowbit(i)
        for(int j = y;j <= m;j += lowbit(j))
            c[i][j] += res;   
}  

以原点为一个端点的子矩阵和

//求a[1][1]到a[x][y]的和
int sum(int x,int y){  
        int tmp = 0;
        for(int i = x, i > 0; i -= lowbit(i)
        for(int j = y;j > 0;j -= lowbit(j))
            tmp += c[i][j];  
          return tmp; 
}  

以任意两点为左上和右下两个端点的子矩阵和

int ask(int x1,int y1,int x2,int y2){
    return sum(x2,y2)+sum(x1-1,y1-1)-sum(x2,y1-1)-sum(x1-1,y2);
}

在这里插入图片描述
与二维前缀和别无二致
红色的矩形是我们要求的。
我们这里为了和计算机里二维数组的保持一致,我们把x坐标视为纵坐标。(感谢qie_wei指正我的错误)
首先sum(x2,y2)很显然是整个大矩形,
sum(x1-1,y2)和sum(x2,y1-1)则是绿色和黄色的两个矩阵(不含红色边),很明显这是我们不要的,所以我们用大的矩阵减去这两个小矩阵。
但是,减完以后我们会发现蓝色阴影部分的矩阵被减了两次,很明显减多了,所以我们还需要加上sum(x1-1,y1-1)
这样就成了我给的公式。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值