题目描述
有一个n * n的地图,每个格子(i, j)都有权值 ,现在你在(1, 1)起点位置, 每次你可以往下走或者往右走,每走到一个格子就会获得该格子的权值(起点的也算),问你走到终点(n, n)有多少条不同的路径,其路径上的权值总和刚好为2019。答案对1e9 + 7取模
输入描述:
第一行输入一个n(1 <= n <= 100)
接下来n行,每行输入n个数字,第i行j列为 aij(1 <= aij <=2019)
输出描述:
一个数,表示答案。
示例1
输入
复制
2
1 2017
2017 1
输出
复制
2
思路
状态转移式:dp[ i ] [ j ] [ k ] =dp[ i-1] [ j ] [ k-map[i][j] ]+dp[ i ] [ j-1 ] [ k-map[i][j] ]
始态:dp[1][1][map[1][1]]=1;
结果就是dp[n][n][2019],dp过程注意取模。
code
#include<iostream>
#include<string.h>
using namespace std;
const int MOD=1e9+7;
long long dp[105][105][2020];
int map[105][105];
int main()
{
memset(dp,0,sizeof(dp));
int n;
cin>>n;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
cin>>map[i][j];
dp[1][1][map[1][1]]=1;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
for(int k=1;k<=2019;k++)
{
if(k-map[i][j]>=0)
dp[i][j][k]=(dp[i-1][j][k-map[i][j]]%MOD+dp[i][j-1][k-map[i][j]]%MOD+dp[i][j][k]%MOD)%MOD;
}
}
cout<<dp[n][n][2019]<<endl;
}
code2
#include<iostream>
#include<string.h>
using namespace std;
const long long MOD=1e9+7;
long long dp[105][105][2020];
int map[105][105];
int flag[105][105][2020];
int main()
{
int n;
cin>>n;
memset(dp,0,sizeof(dp));
memset(flag,0,sizeof(flag));
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
cin>>map[i][j];
dp[1][1][map[1][1]]=1;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
for(int k=1;k<2019;k++)
{
if(i>1||j>1)
if((dp[i-1][j][k]!=0&&map[i][j]+k<=2019)||(flag[i][j-1][k]!=0&&map[i][j]+k<=2019))
{
dp[i][j][k+map[i][j]]=(dp[i-1][j][k]+dp[i][j][k+map[i][j]])%MOD;
if(dp[i][j][k+map[i][j]]==0) flag[i][j][k+map[i][j]]++;
}
if(i>1||j>1)
if((dp[i][j-1][k]!=0&&map[i][j]+k<=2019)||(flag[i][j-1][k]!=0&&map[i][j]+k<=2019))
{
dp[i][j][k+map[i][j]]=(dp[i][j-1][k]+dp[i][j][k+map[i][j]])%MOD;
if(dp[i][j][k+map[i][j]]==0) flag[i][j][k+map[i][j]]++;
}
}
}
cout<<dp[n][n][2019]%MOD<<endl;
}