【机器人视觉SLAM技术--从理论到实践,轻松上手主流算法】

文章目录

  • 视觉SLAM算法总结
    • 1. 基于特征点法的视觉SLAM
      • (1) ORB-SLAM系列
      • (2) PTAM
    • 2. 基于直接法的视觉SLAM
      • (1) LSD-SLAM
      • (2) DSO (Direct Sparse Odometry)
    • 3. 混合方法(特征点+直接法)
      • SVO (Semi-direct Visual Odometry)
    • 4. 多传感器融合算法
      • (1) VINS-Mono
      • (2) OKVIS
    • 5. 其他重要算法
      • (1) MonoSLAM
      • (2) DTAM (Dense Tracking and Mapping)
    • 总结与对比

视觉SLAM算法总结

1. 基于特征点法的视觉SLAM

(1) ORB-SLAM系列

  • 实现方式
    基于ORB特征点,采用多线程架构(跟踪、局部建图、闭环检测)。支持单目、双目和RGB-D相机,通过关键帧管理和全局Bundle Adjustment优化减少累积误差。
  • 优点
    • 高精度,支持回环检测和重定位;
    • 对旋转和缩放具有鲁棒性;
    • ORB特征计算高效,适合实时应用。
  • 缺点
    • 稀疏地图无法直接用于导航避障;
    • 对低纹理或动态环境敏感;
    • 计算资源消耗较大。
  • GitHub
    ORB-SLAM3(支持多传感器融合)

(2) PTAM

  • 实现方式
    首个提出跟踪与建图双线程的算法,使用FAST特征点和金字塔匹配,通过关键帧插入和局部BA优化地图。
  • 优点
    • 实时性高,架构设计开创性;
    • 引入BA优化提升精度。
  • 缺点
    • 仅适用于小场景;
    • 无回环检测,易累积误差;
    • 对快速运动鲁棒性差。
  • GitHub
    PTAM(原始版本)

2. 基于直接法的视觉SLAM

(1) LSD-SLAM

  • 实现方式
    直接利用像素灰度信息构建半稠密地图,通过图像梯度优化相机位姿和深度图。
  • 优点
    • 无需特征提取,适合弱纹理场景;
    • 生成半稠密地图。
  • 缺点
    • 对光照变化敏感;
    • 计算复杂度高,实时性受限。
  • GitHub
    LSD-SLAM

(2) DSO (Direct Sparse Odometry)

  • 实现方式
    稀疏直接法,优化光度误差模型,结合仿射亮度变换和深度优化。
  • 优点
    • 在无纹理区域表现较好;
    • 高精度位姿估计。
  • 缺点
    • 无回环检测;
    • 对相机标定参数敏感。
  • GitHub
    DSO

3. 混合方法(特征点+直接法)

SVO (Semi-direct Visual Odometry)

  • 实现方式
    结合特征点匹配与直接法,利用稀疏特征点初始化位姿,通过直接法优化。
  • 优点
    • 实时性高(100+ FPS);
    • 低计算资源需求。
  • 缺点
    • 累积误差大,无回环检测;
    • 动态环境中易失效。
  • GitHub
    SVO

4. 多传感器融合算法

(1) VINS-Mono

  • 实现方式
    紧耦合视觉惯性里程计(VIO),融合单目相机与IMU数据,通过非线性优化实现状态估计。
  • 优点
    • 高鲁棒性,适应快速运动;
    • 支持回环检测与全局优化。
  • 缺点
    • 初始化过程复杂;
    • 对IMU噪声敏感。
  • GitHub
    VINS-Mono

(2) OKVIS

  • 实现方式
    基于关键帧的视觉惯性SLAM,联合优化重投影误差与IMU预积分误差。
  • 优点
    • 高精度位姿估计;
    • 支持多传感器扩展。
  • 缺点
    • 无回环检测;
    • 计算资源需求高。
  • GitHub
    OKVIS

5. 其他重要算法

(1) MonoSLAM

  • 实现方式
    基于EKF(扩展卡尔曼滤波)的单目SLAM,维护状态向量包含相机位姿和地图点。
  • 优点
    • 首个实时单目SLAM系统;
    • 显式建模不确定性。
  • 缺点
    • 计算复杂度随地图点数量增加;
    • 稀疏地图实用性低。
  • GitHub
    MonoSLAM(非官方实现)

(2) DTAM (Dense Tracking and Mapping)

  • 实现方式
    直接稠密重建,通过GPU加速实现实时深度图估计。
  • 优点
    • 生成稠密地图;
    • 对特征缺失场景鲁棒。
  • 缺点
    • 依赖GPU,难以移植到嵌入式设备;
    • 全局光照变化影响大。
  • GitHub
    未在搜索结果中提供,可参考论文实现。

总结与对比

算法类型适用场景优势劣势
特征点法(ORB-SLAM)高纹理静态环境高精度、回环检测动态环境敏感、计算量大
直接法(DSO)弱纹理场景无特征依赖、鲁棒性较高无回环、光照敏感
混合法(SVO)实时性要求高速度快、资源占用低累积误差大
多传感器(VINS)快速运动、复杂环境鲁棒性强、支持多模态数据初始化复杂、硬件要求高
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值