文章目录
- 视觉SLAM算法总结
- 1. 基于特征点法的视觉SLAM
- (1) ORB-SLAM系列
- (2) PTAM
- 2. 基于直接法的视觉SLAM
- (1) LSD-SLAM
- (2) DSO (Direct Sparse Odometry)
- 3. 混合方法(特征点+直接法)
- SVO (Semi-direct Visual Odometry)
- 4. 多传感器融合算法
- (1) VINS-Mono
- (2) OKVIS
- 5. 其他重要算法
- (1) MonoSLAM
- (2) DTAM (Dense Tracking and Mapping)
- 总结与对比
视觉SLAM算法总结
1. 基于特征点法的视觉SLAM
(1) ORB-SLAM系列
- 实现方式:
基于ORB特征点,采用多线程架构(跟踪、局部建图、闭环检测)。支持单目、双目和RGB-D相机,通过关键帧管理和全局Bundle Adjustment优化减少累积误差。 - 优点:
- 高精度,支持回环检测和重定位;
- 对旋转和缩放具有鲁棒性;
- ORB特征计算高效,适合实时应用。
- 缺点:
- 稀疏地图无法直接用于导航避障;
- 对低纹理或动态环境敏感;
- 计算资源消耗较大。
- GitHub:
ORB-SLAM3(支持多传感器融合)
(2) PTAM
- 实现方式:
首个提出跟踪与建图双线程的算法,使用FAST特征点和金字塔匹配,通过关键帧插入和局部BA优化地图。 - 优点:
- 实时性高,架构设计开创性;
- 引入BA优化提升精度。
- 缺点:
- 仅适用于小场景;
- 无回环检测,易累积误差;
- 对快速运动鲁棒性差。
- GitHub:
PTAM(原始版本)
2. 基于直接法的视觉SLAM
(1) LSD-SLAM
- 实现方式:
直接利用像素灰度信息构建半稠密地图,通过图像梯度优化相机位姿和深度图。 - 优点:
- 无需特征提取,适合弱纹理场景;
- 生成半稠密地图。
- 缺点:
- 对光照变化敏感;
- 计算复杂度高,实时性受限。
- GitHub:
LSD-SLAM
(2) DSO (Direct Sparse Odometry)
- 实现方式:
稀疏直接法,优化光度误差模型,结合仿射亮度变换和深度优化。 - 优点:
- 在无纹理区域表现较好;
- 高精度位姿估计。
- 缺点:
- 无回环检测;
- 对相机标定参数敏感。
- GitHub:
DSO
3. 混合方法(特征点+直接法)
SVO (Semi-direct Visual Odometry)
- 实现方式:
结合特征点匹配与直接法,利用稀疏特征点初始化位姿,通过直接法优化。 - 优点:
- 实时性高(100+ FPS);
- 低计算资源需求。
- 缺点:
- 累积误差大,无回环检测;
- 动态环境中易失效。
- GitHub:
SVO
4. 多传感器融合算法
(1) VINS-Mono
- 实现方式:
紧耦合视觉惯性里程计(VIO),融合单目相机与IMU数据,通过非线性优化实现状态估计。 - 优点:
- 高鲁棒性,适应快速运动;
- 支持回环检测与全局优化。
- 缺点:
- 初始化过程复杂;
- 对IMU噪声敏感。
- GitHub:
VINS-Mono
(2) OKVIS
- 实现方式:
基于关键帧的视觉惯性SLAM,联合优化重投影误差与IMU预积分误差。 - 优点:
- 高精度位姿估计;
- 支持多传感器扩展。
- 缺点:
- 无回环检测;
- 计算资源需求高。
- GitHub:
OKVIS
5. 其他重要算法
(1) MonoSLAM
- 实现方式:
基于EKF(扩展卡尔曼滤波)的单目SLAM,维护状态向量包含相机位姿和地图点。 - 优点:
- 首个实时单目SLAM系统;
- 显式建模不确定性。
- 缺点:
- 计算复杂度随地图点数量增加;
- 稀疏地图实用性低。
- GitHub:
MonoSLAM(非官方实现)
(2) DTAM (Dense Tracking and Mapping)
- 实现方式:
直接稠密重建,通过GPU加速实现实时深度图估计。 - 优点:
- 生成稠密地图;
- 对特征缺失场景鲁棒。
- 缺点:
- 依赖GPU,难以移植到嵌入式设备;
- 全局光照变化影响大。
- GitHub:
未在搜索结果中提供,可参考论文实现。
总结与对比
算法类型 | 适用场景 | 优势 | 劣势 |
---|---|---|---|
特征点法(ORB-SLAM) | 高纹理静态环境 | 高精度、回环检测 | 动态环境敏感、计算量大 |
直接法(DSO) | 弱纹理场景 | 无特征依赖、鲁棒性较高 | 无回环、光照敏感 |
混合法(SVO) | 实时性要求高 | 速度快、资源占用低 | 累积误差大 |
多传感器(VINS) | 快速运动、复杂环境 | 鲁棒性强、支持多模态数据 | 初始化复杂、硬件要求高 |