深度学习
文章平均质量分 88
Dymc
往前,一直往前,一直走!
展开
-
【YOLOv8配置文件理解】
【YOLOv8配置文件理解】原创 2024-03-27 11:21:41 · 1983 阅读 · 0 评论 -
【最新!红外小目标检测算法HCFNet】
红外小目标检测原创 2024-03-26 17:00:13 · 7068 阅读 · 1 评论 -
【完整版!YOLOv9论文翻译】
YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information原创 2024-03-26 11:01:21 · 1744 阅读 · 0 评论 -
【YOLOv8模型网络结构图理解】
YOLOv8模型网络结构图理解原创 2024-03-12 16:01:42 · 45915 阅读 · 14 评论 -
【论文阅读|基于 YOLO 的红外小目标检测的逆向范例】
Yolov7 红外小目标检测原创 2024-02-20 17:29:43 · 2111 阅读 · 4 评论 -
『论文阅读|利用深度学习在热图像中实现无人机目标检测』
无人机目标检测原创 2024-02-19 16:22:43 · 1908 阅读 · 2 评论 -
『论文阅读|研究用于视障人士户外障碍物检测的 YOLO 模型』
研究用于视障人士户外障碍物检测的 YOLO 模型原创 2024-02-19 16:15:47 · 2114 阅读 · 2 评论 -
『论文阅读|2024 WACV 多目标跟踪Deep-EloU|纯中文版』
论文题目: Iterative Scale-Up ExpansionIoU and Deep Features Association for Multi-Object Tracking in Sports论文特点: 作者提出了一种迭代扩展的 ExpansionIoU 和深度特征关联方法Deep-EIoU,用于体育场景中的多目标跟踪,旨在解决非线性、不规则运动、相似外观的在线短时多目标跟踪问题,实验表明,提出的方法对于提高跟踪鲁棒性是有效的,缺点就是该方法目前仅适用于短时跟踪,可能无法解决目标短暂消失入镜原创 2024-01-23 17:45:48 · 2162 阅读 · 0 评论 -
【论文阅读|2024 WACV 多目标跟踪Deep-EloU】
作者提出了一种迭代扩展的 ExpansionIoU 和深度特征关联方法Deep-EIoU,用于体育场景中的多目标跟踪,旨在解决非线性、不规则运动、相似外观的在线短时多目标跟踪问题,实验表明,提出的方法对于提高跟踪鲁棒性是有效的,缺点就是该方法目前仅适用于短时跟踪,可能无法解决目标短暂消失入镜重识别问题,实时性较差。原创 2024-01-23 14:47:36 · 3900 阅读 · 0 评论 -
【深度学习I-基础知识】
深度学习基础知识原创 2024-01-15 17:22:48 · 934 阅读 · 0 评论 -
【利用Yolov8实现多个检测模型融合】
利用Yolov8实现多个检测模型融合原创 2024-01-10 17:28:10 · 4029 阅读 · 9 评论 -
【Win10安装Tensorrt和torch2trt】
Win10安装tensorrt和torch2trt原创 2024-01-02 11:18:15 · 1390 阅读 · 0 评论 -
【Python处理数据集】
python处理数据集原创 2023-09-26 10:53:13 · 447 阅读 · 0 评论 -
ubuntu18快速运行pytracking
pytracking目标跟踪程序运行方式。原创 2021-03-22 16:23:03 · 738 阅读 · 1 评论 -
TensorFlow2.0之五种神经网络参数优化器
五种参数优化器1 SGD(不含momentum的梯度下降算法)2 SGDM(含momentum的梯度下降算法,在SGD基础上增加一阶动量)3 Adagrad(在SGD基础上增加二阶动量)4 RMSProp(在SGD基础上增加二阶动量)5 Adam(同时结合SGDM一阶动量和RMSProp二阶动量)原创 2020-08-27 19:17:49 · 1558 阅读 · 1 评论 -
Tensorflow2.0版本利用鸢尾花数据集,实现前向传播、反向传播,可视化loss曲线
准备数据集读入数据->随机打乱数据顺序->匹配x,y并打包成一小撮->设置相同的数据类型->设置输入参数w,b->设置超参数训练整体来说,需要确定训练数据集迭代的次数,并明确对于整个训练数据集而言,是分成了一小撮一小撮进行执行的,因此,需要有两个循环;考虑到训练数据集的最终目的是为了优化参数w,b,且tensorflow2.0版本已经给出了自动求导的方法,可以在tf.GradientTape() 中执行,通过原有的线性模型和激活函数得到预测值y,与真实值y_进行对比,得.原创 2020-08-25 21:11:45 · 1037 阅读 · 0 评论