[数据结构与算法]基础算法(排序, 二分, 前缀, 差分)

🎄欢迎来到@dandelionl_的csdn博文,本文主要讲解算法中的基础算法的相关知识🎄


🌈我是dandelionl_,一个正在为秋招和算法竞赛做准备的学生🌈
🎆喜欢的朋友可以关注一下,下次更新不迷路🎆

Ps: 月亮越亮说明知识点越重要 (重要性或者难度越大)🌑🌒🌓🌔🌕    


目录

 一. 快速排序

二. 归并排序

三.  二分

✨整数二分:

✨浮点数的二分

四.  前缀和

✨ 一维前缀

✨二维前缀

五. 差分


 一. 快速排序

快速排序:(分治的思想)✅

确定分界点:q[l],  q[(r+l)/2],  q[r] (中间点可以随机选, 按照同一规则, 这里选(l+r)/2该点)

维护数组:维护分界点的左边都比分界点小,分界点的右边都比分界点大

按照维护关系, 递归处理左右两段

💡思想解释:

        先整后细:先让大体总的符合条件,再部分部分解决

模板代码

void quick_sort(int q[], int L, int R){

    if(L >= R) return;

    int x = q[L], i = L - 1, j = R + 1;
    while(i < j){
        do i ++; while(q[i] < x);
        do j --; while(q[j] > x);
        if(i < j) swap(q[i], q[j]);
    }

    quick_sort(q, L, j);
    quick_sort(q, j + 1, R);
}

🌸代码解析: 

(1) 对于 x = q[l + r >> 1], j 始终走到q[R - 1] 的位置, 因此为了不陷入死循环必须选择

quick_sort(q, l, j);

quick_sort(q, j + 1, r);

 因为选择 i 的话, i 即可能出现在 L 的位置上也可能出现在 R 的位置上, 当出现在第一种情况的时候(图中的情况一)不会有影响, 但是出现在情况二的时候就会出现陷入死循环的情况

quick_sort(q, l, i- 1), quick_sort(q, i, r);

以上代码代入就会出现quick_sort(q, l, l) , quick_sort(q, l, r), 对于第二个函数, 与我起初调用的函数想同, 这说明有一次执行了该函数, 因此下一次也会执行, 这样往复, 就陷入了死循环.

⚠ : 重点👑🌈🎉👉✨⭐ 

1. 分治点的选择

2. i++   和   j--

3. 递归的参数的确定

 还有另外一个版本的代码:

void quick_sort(int q[], int l, int r)
{
    if (l >= r) return;

    int i = l - 1, j = r + 1, x = q[l + r + 1>> 1];
    while (i < j)
    {
        do i ++ ; while (q[i] < x);
        do j -- ; while (q[j] > x);
        if (i < j) swap(q[i], q[j]);
    }
    quick_sort(q, l, i - 1), quick_sort(q, i, r);
}

二. 归并排序

(也是分治的思想)✅

1. 将数组从中间分开, 分别对其按照这三步进行排序, 直到无法分割

2. 把两边排好序的数组再次进行统一排序

3. 再将左右两个数组进行合并

👑 思路 : 先细后整, 先保证这部分是排好序的, 直接那这一部分去和另一部分排好序的进行组合, 这样整个数组就是排好序的

void merge_sort(int a[], int l, int r) {
    if (l >= r)return;
    int mid = l + r >> 1;
    merge_sort(a, l, mid);
    merge_sort(a, mid + 1, r);
    int k = 0, i = l, j = mid + 1;
    while (i <= mid && j <= r)
        if (a[i] >= a[j]) temp[k++] = a[i++];
        else temp[k++] = a[j++];
    while (i <= mid) temp[k++] = a[i++];
    while (j <= r) temp[k++] = a[j++];
    for (i = l, j = 0; i <= r; ++i, ++j) a[i] = temp[j];
}

🌈图解 : 


三.  二分

✨整数二分:

看 mid(你选取的中点) 是 左边 还是 右边

代码 :

int bSearch_1(int l, int r) {
    while (l < r) {
        int mid = l + r >> 1;
        if (check(mid)) r = mid;		// 如果左边界满足就执行这个
        else l = mid + 1;
    }
    return l;
}



int bSearch_2(int a[], int l, int r) {
    while (l < r) {
        int mid = l + r + 1 >> 1;
        if (check(mid)) l = mid;		// 如果右边界满足就执行这个
        else r = mid - 1;
    }
    return l;
}

总结的口诀 : 不管快排和二分, 中点偏左选右边, 中点偏右选左边

偏左 : mid = l + r >> 1

偏右 : mid = l + r + 1 >> 1

解释 : 中点分别对应快排中的分治点和二分中的中点, 当快排中的中点偏左那么就选 j (j 是右边的, i 是左边的),  反之, 选 i 为递归参数;  当二分中的中点偏左时, 那么就选r = mid, 反之选 l = mid.


✨浮点数的二分

浮点数二分主要变化为截至条件为 : ( r - l ) > 1e6  (差的值)

以下为求 n 的平方根的习题, 可以更好地理解浮点数二分

#include<iostream>
#include<algorithm>
#include<cstring>

using namespace std;
int main() {
    double n;
    cin >> n;
    double l = 0, r = n;
    while((r-l) > 1e-6) {
        double mid = (l + r)/2;
        if(n <= mid * mid) r = mid;
        else l = mid;
    }
    printf("%0.2lf\n", l);
    return 0;
}

四.  前缀和

前缀和 : 顾名思义是数组中某元素前面的所有和或者部分和

为什么会出现它 : 求一段和的时间复杂度为 O(1)

✨ 一维前缀

a[1],a[2],a[3].....a[n]
s[i] = a[i] + a[i-1]...a[2] + a[1]

a[3] + a[4]...a[14] + a[15] = s[15] - s[3-1]
s[l,r] = s[r] - s[l-1]

for (int i = 1; i <= n; i ++ ) scanf("%d", &a[i]);       //读入n个数

for (int i = 1; i <= n; i ++ ) s[i] = s[i - 1] + a[i];   //处理前缀和

✨二维前缀

 s[i][j] 表示二维数组中,左上角(1, 1)到右下角(i, j)所包围的矩阵元素的和

 

 s[i][j] = s[i - 1][j] + s[i][j - 1 ] + a[i] [j] - s[i - 1][j - 1]

(x1, y1)为左上角,(x2, y2)为右下角的子矩阵的和为:
s[x2, y2] - s[x1 - 1, y2] - s[x2, y1 - 1] + s[x1 - 1, y1 - 1]


五. 差分

差分就是将前缀和的操作反过来

已知 : s[i]   得到   a[i] = s[i] - s[i - 1]

差分的好处在于, 给一段数组加一个数只需要对两个位置( b[i]   和  b[j+1] )进行操作即可

🎉差分数组:

首先给定一个原数组a:a[1], a[2], a[3],,,,,, a[n];

然后我们构造一个数组b : b[1], b[2], b[3],,,,,, b[i];

使得 a[i] = b[1] + b[2] + b[3] + ,,,,,, + b[i]

也就是说,a数组是b数组的前缀和数组,反过来我们把b数组叫做a数组的差分数组。换句话说,每一个a[i]都是b数组中从头开始的一段区间和。

👉构造差分数组的时候的巧妙方法 : 初始化就进行差分

如下:(⚠ : b 数组从下标 1 开始)

a[0 ]= 0; (为了呈现规律, 可有可无)

b[1] = a[1] - a[0];

b[2] = a[2] - a[1];

b[3] = a [3] - a[2];

........

b[n] = a[n] - a[n - 1];

我们只要有b数组,通过前缀和运算,就可以在O(n) 的时间内得到 a 数组 。

✨差分的用处解析 : 

给定区间[l, r ],让我们把a数组中的[l, r] 区间中的每一个数都加上c,即 a[l] + c , a[l + 1] + c , a[l + 2] + c ,,,,,, a[r] + c;

始终要记得,a数组是b数组的前缀和数组,比如对b数组的b[i]的修改,会影响到a数组中从a[i]及往后的每一个数。

首先让差分b数组中的 b[l] + c ,通过前缀和运算,a数组变成 a[l] + c ,a[l + 1] + c,,,,,, a[n] + c;

然后我们打个补丁,b[r + 1] - c, 通过前缀和运算,a数组变成 a[r + 1] - c,a[r + 2] - c,,,,,,,a[n] - c;

  • 12
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 11
    评论
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值