1.背景与意义
1.1 背景
数据仓库的建设不是一蹴而就、一尘不变的,而是一个持续的过程,需要随着业务的变化而不断地进行衍进与迭代。它与业务一样在不断地生长和进化。
在数据仓库建设过程中,参与建设的人员能力参差不齐,就会导致数仓在建设过程中多少存在一些问题,这种问题在初期由于没有下游或下游较少并不会有太大的影响,但经过长期的积累和应用问题就会被逐步放大,最终带来性能的影响与生产的延迟。
那么在整个数据仓库建设过程中除了要有数仓建设理论、规范,也需要有辅助工具对现有数仓内容进行数据监控,这样从源头规范开发流程,同时也有工具反馈当前数据仓库的状态,才能及早处理存在的问题。
1.2 意义
同上
2.技术路径与实现方式
2.1数据仓库理论
不在本文叙述范围,可以关注:
基础架构:Lambda架构、Kappa架构
数仓建模:范式建模、维度建模、DV模型、Anchor模型
建模流程:概念建模->逻辑建模->物理建模
数据分层:ODS->DWD->DWM->DWS->ADS、A->B3->B2->B1->C、ODS->PDW->MID->APP、whatever
业务主题:交易、人员、客户、商城等。(逻辑隔离、物理隔离)
OLAP工具:Kylin、Doris、TiDB、Clickhouse
2.2看见生产流程
我们暂不