记一次torch和torchvision安装历程

由于项目需要安装这两个玩意,我在网上找了各种办法,最后这办法最方便

下载torch的链接:

https://mirrors.aliyun.com/pytorch-wheels/cu118/torch-2.3.1+cu118-cp38-cp38-win_amd64.whl

下载torchvision的链接:

https://mirrors.aliyun.com/pytorch-wheels/cu118/torchvision-0.18.0+cu118-cp38-cp38-win_amd64.whl

这个链接根据自己设备的实际情况来改变,具体咋改可以百度一下自己的设备适合哪个版本

然后安装过程中提示还需要安装 mkl-2021.4.0-py2.py3-none-win_amd64.whl,这个下载的特别慢,下载链接:https://download.pytorch.org/whl/mkl/

都下载好了之后先把mkl-2021.4.0-py2.py3-none-win_amd64.whl安装了

pip install mkl-2021.4.0-py2.py3-none-win_amd64.whl

然后在安装torch和torchvision

pip install torch-2.3.0+cu118-cp38-cp38-win_amd64.whl torchvision-0.18.0+cu118-cp38-cp38-win_amd64.whl

搞了一下午终于完美安装好
 

### 安装 PyTorch 及其相关库 对于 Python 3.9 CUDA 11.6 的环境,在 Windows 平台上可以通过特定的 `.whl` 文件来安装 PyTorchtorchvision torchaudio。具体操作如下: #### 使用预编译轮文件 (`.whl`) 安装 通过指定版本的 wheel 文件进行安装能够确保兼容性稳定性。 ```bash pip install torch-1.12.0+cu116-cp39-cp39-win_amd64.whl[^1] pip install torchvision-0.12.0+cu116-cp39-cp39-win_amd64.whl ``` 这些命令会分别安装对应版本的 PyTorchtorchvision torchaudio 库,适用于具有 CUDA 11.6 支持的 Windows AMD64 架构系统,并且与 Python 3.9 版本相匹配。 #### 利用 Conda 环境管理工具安装 另一种方法是借助 Anaconda 或 Miniconda 来创建一个新的虚拟环境并安装所需的软件包。这种方法特别适合那些希望简化依赖关系管理避免潜在冲突的人群。 ```bash conda create -n myenv python=3.9 conda activate myenv conda install pytorch torchvision torchaudio cudatoolkit=11.6 -c pytorch -c conda-forge[^3] ``` 上述指令首先建立了一个名为 `myenv` 的新环境,接着激活该环境,最后按照给定条件安装了带有 CUDA 11.6 配置的支持 GPU 加速功能的 PyTorch 及其他两个扩展库。 如果遇到 SSL 模块不可用的问题,则可能是因为 OpenSSL 库缺失或者是由于某些原因导致 Python 编译时未正确配置 SSL 支持。针对此情况,建议参照相关文档或社区讨论寻找解决方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值