【Kaidi安装问题】下载mkl过慢

执行install_mkl.sh时会下载mkl,但是国内速度过于慢,而且因为过慢的速度,还是timeout。真是无法忍受。

那么看一下是否可以另辟蹊径呢?

当然,如果可以人肉FQ也是可以的,不过大多同学可能没有这个条件

解决问题

首先从脚本出发,看到注释里其实是有下载地址的.那么我们就尝试一下手动下载吧
脚本截图
下载地址为 https://software.intel.com/mkl/choose-download
幸好这个intel的地址是没有被墙的,所以可以直接去访问下载,速度还是可以的.
下载地址
在下载之前需要注册一下
下载随便填一下主要是留个邮箱即可.
注册注册后就可以选择intel的下载包,注意选择MKL FOR LINUX
下载页面

下载完成后,解压安装包.里面有个install_GUI.sh脚本,用root执行它.然后执行安装.
安装界面
安装完成后,在Kaldi源码中找到并执行check_dependencies.sh,此时不会再提示mkl需要安装了.

<think>好的,用户的问题是关于如何修改genpts_igarch.m脚本,以适配归一化数据并生成IGARCH后验近似的点集图。需要处理依赖项添加、数据读取和对数收益率计算的调整。我需要结合用户提供的引用中的代码片段,特别是引用[2]里的IGARCH模型参数估计和波动率计算部分,来推断可能的MATLAB脚本修改步骤。 首先,用户提到使用归一化数据,这意味着数据需要标准化处理。在MATLAB中,可能需要用zscore函数对原始数据进行归一化。然后,数据读取部分可能需要从文件读取,比如CSV或Excel文件,确保数据正确加载并进行处理。 接下来是对数收益率的计算调整。通常,对数收益率的公式是$r_t = \ln(P_t) - \ln(P_{t-1})$,但归一化后可能需要调整。用户可能需要先将价格数据归一化,再计算收益率,或者对收益率本身进行归一化。需要明确步骤,可能参考引用中的Python代码,将其转换为MATLAB语法。 依赖项添加方面,用户可能需要确保所有必要的函数和工具箱已加载,比如统计和机器学习工具箱用于zscore,金融工具箱用于时间序列分析。此外,如果genpts_igarch.m原本依赖其他自定义函数或脚本,需要检查路径是否正确。 然后,IGARCH模型的后验近似点集图生成部分。根据引用[2]中的参数估计,可能需要调整参数估计过程,使用归一化后的数据。波动率计算部分需要对应修改,确保sigma2的计算考虑到归一化的影响,可能需要调整参数初始值或计算公式。 还需要注意,在MATLAB中处理时间序列索引可能与Python不同,需要正确设置时间索引以匹配数据点。绘图部分可能需要调整坐标轴标签,注明使用了归一化数据,并确保图像正确显示后验点集。 可能存在潜在的问题,比如归一化后的数据范围变化影响模型参数估计,需要验证调整后的模型是否仍能正确收敛。此外,数据读取路径是否正确,文件格式是否匹配,以及MATLAB版本兼容性等问题也需要考虑。 总结步骤应该是:加载依赖项、读取并归一化数据、调整对数收益率计算、修改IGARCH参数估计过程、生成后验点集图并验证结果。需要逐步指导用户修改脚本的各个部分,并提醒可能的注意事项,如路径设置、参数调整和结果验证。</think>### 分步解决方案 #### 1. **数据归一化处理** 在MATLAB中添加数据标准化步骤,确保输入数据符合IGARCH模型要求: ```matlab % 读取原始数据(示例) data = readtable('your_data.csv'); prices = data.Close; % 归一化处理(z-score标准化) normalized_prices = zscore(prices); ``` #### 2. **调整对数收益率计算** 修改收益率计算公式,使用归一化后的价格数据: ```matlab % 计算对数收益率(基于归一化数据) log_returns = diff(log(normalized_prices)); ``` #### 3. **修改IGARCH参数初始化** 根据引用[2]中的参数结构,调整参数初始化逻辑: ```matlab % 初始化IGARCH参数(示例值) vol = std(log_returns); miu = mean(log_returns); parameter_IGARCH = [vol, 0.66, miu]; % [alpha_0, beta_1, miu] ``` #### 4. **更新似然函数计算** 调整波动率计算过程以适应归一化数据: ```matlab function L = L_IGARCH(parameter) sigma2 = parameter(1)^2; % 初始波动率 L = 0; for i = 1:length(log_returns) residual = log_returns(i) - parameter(3); L = L + 0.5*(log(2*pi) + log(sigma2) + residual^2/sigma2); sigma2 = parameter(1) + (1-parameter(2))*(residual^2) + parameter(2)*sigma2; end end ``` #### 5. **优化器调用与后验采样** 使用MATLAB优化工具进行参数估计,并生成后验点集: ```matlab % 参数优化 options = optimset('Display','iter','MaxIter',1000,'TolX',1e-9); [res_params, fval] = fminsearch(@L_IGARCH, parameter_IGARCH, options); % 生成后验近似点集(示例) posterior_samples = mvnrnd(res_params, cov_matrix, 1000); ``` #### 6. **绘图代码调整** 修改绘图部分标注说明和坐标轴范围: ```matlab figure; scatter(posterior_samples(:,1), posterior_samples(:,2)); xlabel('Alpha_0 (归一化)'); ylabel('Beta_1 (归一化)'); title('IGARCH后验参数分布'); ``` ###
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值