poj1001高精度乘法

1.题目
问题简述:
对一个实数R( 0.0 < R < 99.999 ),要求写程序精确计算 R 的 n 次方(R n),其中n 是整数并且 0 < n <= 25。

输入要求:
输入包括多组 R 和 n。 R 的值占第 1 到第 6 列,n 的值占第 8 和第 9 列。

输出要求:
对于每组输入,要求输出一行,该行包含精确的 R 的 n 次方。输出需要去掉前导的 0 后不要的 0 。如果输出是整数,不要输出小数点。

输入样例:
95.123 12
0.4321 20
5.1234 15
6.7592  9
98.999 10
1.0100 12

输出样例:
548815620517731830194541.899025343415715973535967221869852721
.00000005148554641076956121994511276767154838481760200726351203835429763013462401
43992025569.928573701266488041146654993318703707511666295476720493953024
29448126.764121021618164430206909037173276672
90429072743629540498.107596019456651774561044010001
1.126825030131969720661201

题目来源:
http://poj.org/problem?id=1001&lang=zh-CN&change=true


2.解题思路
数字利用的是科学记数法的思想,但是做的变化有所不同,做法是把小数点后的数字位数存为e,然后把数字存入数组。例如:
95.123   存为    a[200] = {3,2,1,5,9}   e = 3
小数点的位置和数字的乘法就可以分开考虑了,比如算95.123,经过我上一步的处理就转化为计算95123的12次方,然后再计算乘方后小数点后数字的位数。
对于后一个为题很简单,结果就是e*n。
计算整数的乘方用了两个函数,一个是计算两个整数相乘的,一个是快速幂,后者调用前者计算乘法。
输出的时候注意要满足要求,这个并不难。
这个代码其实思路不难,但是写起来细节比较多,我的IDE调试功能有问题,可能需要改配置,不然debug的时候不会停。然后我就是用把中间结果print出来做的调试,耽误了不少时间。总共调试用了小半天的时间。

3.C语言代码
#include <stdio.h>
#include <stdlib.h>

int len(int*a,int n)    //查看数字a的实际长度    无错误
{
    int i;
    for(i=n-1;i>=0;i--)
        if(a[i]!=0)
            break;
    if(i<0)
        return 1;
    else
        return i+1;
}

void mult(int*a,int*b)    //将a和b相乘的结果存入a中   无错误
{
    int c[500]={0};
    int i,j;
    int la,lb,lc;
    int tmp;
    la = len(a,200);
    lb = len(b,200);
    for(i=0;i<lb;i++)
    {
        for(j=0;j<la;j++)
        {
            tmp = a[j]*b[i] + c[i+j];
            c[i+j] = tmp%10;
            c[i+j+1] += tmp/10;
        }
    }
    if(c[la+lb-1]==0)
        lc = la + lb - 1;
    else
        lc = la + lb;
    if(lc<=200)
    {
        for(i=0;i<lc;i++)
            a[i] = c[i];
    }
}

void q_power(int*a,int n)    //快速幂:将结果存回a
{
    int b[200]={1};    //存储中间结果
    int i;
    while(n>0)
    {
        if(n%2==1)
        {
            mult(b,a);
        }
        mult(a,a);
        n /= 2;
    }
    for(i=0;i<200;i++)
        a[i] = b[i];
}

int main()
{
    int a[200]={0};    //初始化
    int i,j;
    int n;    //幂次
    int e;    //科学计数法
    int p,q;
    char s[10];

    while(scanf("%s %d",s,&n)!=EOF)
    {
        //初始化a
        for(i=0;i<200;i++)
            a[i] = 0;

        //处理读入数据
        e = 0;
        j = 0;
        for(i=5;i>=0 && s[i]!='.';i--)
        {
            a[j++] = s[i] - '0';
            e++;
        }
        if(i<0)
            e = 0;
        for(i=i-1;i>=0;i--)
        {
            a[j++] = s[i] - '0';
        }

        //快速幂计算乘方
        q_power(a,n);

        //重新计算e
        e = n*e;

        //输出结果
        //寻找i、j
        for(i=200-1;i>=0;i--)
            if(a[i]!=0)
                break;
        for(j=0;j<200;j++)
            if(a[j]!=0)
                break;

        p = i>(e-1)?i:(e-1);
        q = e>j?j:e;

        //输出小数点前的数字
        for(i=p;i>=q;i--)
            if(i>=e)
                printf("%d",a[i]);
            else
                break;

        //输出小数点
        if(i>=q)
            printf(".");
        //输出小数点后的数字
        for(;i>=q;i--)
            printf("%d",a[i]);
        printf("\n");
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值