算法训练Day24|理论基础 ● 77. 组合

回溯算法理论基础

1.什么是回溯?

回溯法,也称回溯搜索法。是一种搜索方式。
递归和回溯是同时存在,递归进入对应回溯返回。

2.回溯法的本质

本质是穷举,穷举所有可能,然后选出需要的答案。
是一种暴力解法,可以剪枝操作。

3.解决的问题

一般解决如下几种问题:
①组合问题:N个数里面按一定规则找出k个数的集合
②切割问题:一个字符串按一定规则有几种切割方式
③子集问题:一个N个数的集合里有多少符合条件的子集
④排列问题:N个数按一定规则全排列,有几种排列方式
⑤棋盘问题:N皇后,解数独
【共性】:一定规则的约束,多个数字或字符串在该规则下有多种结果。

4.怎么理解回溯法

回溯法解决的问题都可以抽象为树形结构
回溯法解决的都是在集合中递归查找子集,集合的大小就构成了树的宽度,递归的深度,都构成了树的深度。

5.回溯法模板

由递归三部曲,得到回溯三部曲
1.回溯函数返回值及参数
函数返回值一般为void
回溯函数的参数不容易一次确定,一般先写逻辑,然后需要什么参数,就填什么参数…

1// 回溯函数返回值及参数
2void backtracking(参数)
3

2.回溯函数终止条件
一般遍历到叶子节点或者找到了满足条件的答案,把这个答案存起来,并结束本层递归

1// 回溯函数终止条件
2void backtracking(参数)
3

3.回溯函数的遍历过程
回溯法一般在集合中递归搜索,集合的大小构成了树的宽度,递归的深度构成了树的深度.

1// 回溯函数的遍历过程
2for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
3    处理节点;
4    backtracking(路径,选择列表); // 递归
5    回溯,撤销处理结果
6}

for循环是横向遍历,backtracking(递归)是纵向遍历

回溯算法模板:
 1void backtracking(参数) {
 2    if (终止条件) {
 3        存放结果;
 4        return;
 5    }
 6
 7    for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
 8        处理节点;
 9        backtracking(路径,选择列表); // 递归
10        回溯,撤销处理结果
11    }
12}
LeectCode: 77. 组合  

77. 组合 - 力扣(LeetCode)

1. 思路

明确结果:获取单个结果,将结果添加到结果集中
遍历方式:for循环进行横向遍历,在横向遍历的基础上递归函数进行深度遍历,防止有重复的结果
在深度遍历时,需要记录要遍历的深度位置用startIndex标识实现
当结果长度和k相同时终止,将结果添加到结果集中即可

2.代码实现
 1class Solution {
 2    List<List<Integer>> result = new ArrayList<>(); // 存放最终结果集  
 3    LinkedList<Integer> path = new LinkedList<>(); // 存放每条路径的结果
 4
 5    public List<List<Integer>> combine(int n, int k) {
 6        combineHelper(n, k, 1);
 7        return result;
 8    }
 9    // 确定回溯函数递归逻辑
10    private void combineHelper(int n, int k, int startIndex) {
11        // 确定终止条件:当path中的个数等于k时加入到结果集result中
12        if (path.size() == k) {
13            result.add(new ArrayList<>(path));
14            return;
15        }
16        // for循环进行横向遍历
17        for (int i = startIndex; i < n - (k - path.size()) + 1; i++) {
18            path.add(i);
19            // 递归进行深度遍历
20            combineHelper(n, k, i + 1); // i + 1 代表表示递归遍历的层数
21            path.removeLast();
22        }
23    }
24}
3.复杂度分析

时间复杂度:函数调用的次数和for循环次数决定,一次递归结果包含函数调用1次和for循环1次,共2次,记为则为2^1,k次递归,则为2^k.n个数,则复杂度为O(n*2^k).
空间复杂度:递归函数消耗栈空间,定义结果集消耗堆空间。则复杂度为O(n+m)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值