2013年css数据库
如果您只是从任何传统的BI供应商(Teradata,IBM,Oracle,SAS,EMC,HP等)购买了大数据解决方案上的大量资金,那么您在2013年的投资回报率很可能不理想。 2013年将出现几项创新,这些创新将使大数据的价值呈指数变化。 其他技术创新只是在等待智能初创公司充分利用它们。
实时Hadoop
第一个重大创新将是Google的类似Dremel的解决方案,例如Impala , Drill等,这些解决方案将逐渐成熟。它们将允许对大数据进行实时查询并成为开源。 因此,与当前免费提供的产品相比,您将获得优质的产品。
基于云的大数据解决方案
绝对的市场领导者是拥有EMR的亚马逊。 Elastic Map Reduce并不是要能够在云中运行Map Reduce操作,而是要支付您所使用的费用,而不是更多。 传统的BI供应商仍在围绕基于使用量的Cloud许可采取行动。 除了许多聪明的初创公司提出真正创新的大数据和云解决方案。
大数据设备
您可以购买一些非常昂贵的大数据设备,但在这里颠覆性参与者很可能会改变市场。 GPU相对便宜。 将它们堆叠到服务器中,并使用Virtual OpenCL之类的东西来制作自己的GPU虚拟化群集解决方案。 这些类型的自制GPU集群已经用于安全性大数据相关工作。
还期望更多的硬件供应商将移动ARM处理器包装到服务器盒中。 戴尔 , 惠普等已经在这样做。 想象一下分布式地图缩减的潜力。
最终, Parallella将以99美元的价格将16核超级计算机投入大家的手中。 他们2013年的超级计算机挑战赛绝对值得您关注。 他们的路线图讨论了64和1000个核心版本。 如果Adapteva能够信守诺言并用Parallella's 占领市场,那么Parallella Clusters将成为2013年的大数据设备。
分布式机器学习
Mahout是一个很棒的项目,但是Map Reduce可能不是运行迭代分布式反向传播或任何其他机器学习算法的最佳架构。 Jubatus看起来很有前途。 同样,像HogWild这样的算法创新也可以真正改变动力学,从而实现高效的分布式机器学习。 这个空间肯定为2013年的更多突破性创新做好了准备。
更简单的大数据工具
在开放源代码领域,这仍然是一个大白点。 拥有开放源代码和易于使用的拖放工具进行大数据分析确实可以使应用程序更加出色。 我们已经有一些很好的商业示例( Radoop = RapidMiner + Mahout , Tableau , Datameer等),但是我们缺少好的开源工具。
我目前正在寻找新的挑战,因此,如果您活跃于大数据领域并且正在寻找知识渊博的高级管理人员,请务必与telruptive dot com的maarten联系。
参考: Teleruptive博客上JCG合作伙伴 Maarten Ectors的2013年大数据预测
翻译自: https://www.javacodegeeks.com/2013/03/big-data-2013-predictions.html
2013年css数据库