原题
Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
Integers in each row are sorted in ascending from left to right.
Integers in each column are sorted in ascending from top to bottom.
Example:
Consider the following matrix:
[
[1, 4, 7, 11, 15],
[2, 5, 8, 12, 19],
[3, 6, 9, 16, 22],
[10, 13, 14, 17, 24],
[18, 21, 23, 26, 30]
]
Given target = 5, return true.
Given target = 20, return false.
解法1
按照行迭代, 查看target是否在行里.
Time: O(m*n)
Space: O(1)
代码
class Solution(object):
def searchMatrix(self, matrix, target):
"""
:type matrix: List[List[int]]
:type target: int
:rtype: bool
"""
for row in matrix:
if target in row:
return True
return False
解法2
根据题意, 每行和每列都是升序排列, 那么我们定义一个初始的r = 0, c= n-1. 如果target正好等于matrix[r][c], 那么直接返回; 如果target 比 matrix[r][c]大, 那它肯定不在这一行, 由于matrix[r][c]是它所在行的最大值, 因此我们到下一行找; 如果target比matrix[r][c]小, 那它肯定不在这一列, 由于matrix[r][c]是它所在列的最小值, 因此我们到前一列去找.
Time: O(m+n)
Space: O(1)
代码
class Solution(object):
def searchMatrix(self, matrix, target):
"""
:type matrix: List[List[int]]
:type target: int
:rtype: bool
"""
# base case
if not matrix: return False
m, n = len(matrix), len(matrix[0])
r, c = 0, n-1
while r < m and c >=0:
if matrix[r][c] == target:
return True
if matrix[r][c] < target:
# go to next row
r += 1
else:
# go to prev col
c -= 1
return False