74. Search a 2D Matrix 240. Search a 2D Matrix II python

Write an efficient algorithm that searches for a value in an mn matrix. This matrix has the following properties:

  • Integers in each row are sorted from left to right.
  • The first integer of each row is greater than the last integer of the previous row.

Example 1:

Input:
matrix = [
  [1,   3,  5,  7],
  [10, 11, 16, 20],
  [23, 30, 34, 50]
]
target = 3
Output: true

Example 2:

Input:
matrix = [
  [1,   3,  5,  7],
  [10, 11, 16, 20],
  [23, 30, 34, 50]
]
target = 13
Output: false

题意:给一个二维list,从左到右,从上到下拍好序的,然后判断target是否在二维list中

思路:1:把全部的值放到set中,然后用in判断,缺点:占用内存较大

2:判断是否大于当前列第一个值,小于最后一个值,是:用in判断是否存在,不是:进入下一列。优点:节省空间

class Solution(object):
    def searchMatrix(self, matrix, target):
        """
        :type matrix: List[List[int]]
        :type target: int
        :rtype: bool
        """
        '''
        if(matrix==[]):
            return False
        ma_list=set()
        row=len(matrix)
        column=len(matrix[0])
        for i in range(row):
            for j in range(column):
                ma_list.add(matrix[i][j])
        if(target in ma_list):
            return True
        else:
            return False
        '''
        if(matrix==[] or matrix==[[]]):
            return False
        row=len(matrix)
        column=len(matrix[0])
        for i in range(row):
            if(target<matrix[i][0]):
                return False
            elif(target<=matrix[i][column-1]):
                if(target in matrix[i]):
                    return True
                else:
                    return False
            else:
                continue
        return False

Write an efficient algorithm that searches for a value in an mn matrix. This matrix has the following properties:

  • Integers in each row are sorted from left to right.
  • The first integer of each row is greater than the last integer of the previous row.

Example 1:

Input:
matrix = [
  [1,   3,  5,  7],
  [10, 11, 16, 20],
  [23, 30, 34, 50]
]
target = 3
Output: true

Example 2:

Input:
matrix = [
  [1,   3,  5,  7],
  [10, 11, 16, 20],
  [23, 30, 34, 50]
]
target = 13
Output: false

思路:从左下角判断,如果比他大就向上,小就向右

class Solution(object):
    def searchMatrix(self, matrix, target):
        """
        :type matrix: List[List[int]]
        :type target: int
        :rtype: bool
        """
        '''
        if(matrix==[]):
            return False
        ma_list=set()
        row=len(matrix)
        column=len(matrix[0])
        for i in range(row):
            for j in range(column):
                ma_list.add(matrix[i][j])
        if(target in ma_list):
            return True
        else:
            return False
        '''
        if(matrix==[] or matrix==[[]]):
            return False
        row=len(matrix)
        column=len(matrix[0])
        for i in range(row):
            if(target<matrix[i][0]):
                return False
            elif(target<=matrix[i][column-1]):
                if(target in matrix[i]):
                    return True
                else:
                    return False
            else:
                continue
        return False

 

ValueError: The matrix is not a 4D matrix. 这个错误通常出现在处理多维数组或矩阵时,特别是在使用深度学习框架(如TensorFlow或PyTorch)进行张量操作时。这个错误提示表明你正在操作的矩阵不是4维的,而代码期望的是一个4维矩阵。 具体来说,4D矩阵通常用于表示批量数据(例如,图像数据),其维度通常为 (batch_size, height, width, channels)。如果你提供的矩阵维度不符合这个要求,就会出现这个错误。 以下是一些可能的原因和解决方法: 1. **维度不匹配**:确保你提供的矩阵确实是4维的。你可以使用 `numpy` 或 `tensorflow` 提供的函数来检查矩阵的维度。 ```python import numpy as np matrix = np.random.rand(10, 28, 28, 3) # 示例4D矩阵 print(matrix.shape) # 输出: (10, 28, 28, 3) ``` 2. **数据预处理错误**:在数据预处理阶段,确保你正确地调整了数据的维度。例如,在处理图像数据时,通常需要将数据从 (height, width, channels) 转换为 (batch_size, height, width, channels)。 ```python import numpy as np images = np.random.rand(28, 28, 3) # 单张图像 images = np.expand_dims(images, axis=0) # 添加batch维度,变为(1, 28, 28, 3) print(images.shape) # 输出: (1, 28, 28, 3) ``` 3. **框架特定错误**:如果你使用的是深度学习框架,确保在调用函数时传递的矩阵维度是正确的。例如,在TensorFlow中,某些层(如卷积层)期望输入是4维的。 ```python import tensorflow as tf inputs = tf.random.uniform((10, 28, 28, 3)) # 示例输入 conv_layer = tf.keras.layers.Conv2D(filters=16, kernel_size=3, activation='relu') outputs = conv_layer(inputs) print(outputs.shape) # 输出: (10, 26, 26, 16) ``` 通过检查和调整矩阵的维度,你应该能够解决这个问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值