Lecture 7: Wavepackets and uncertainty. Time evolution and shape change time evolutions.

L7.1 Wavepackets and Fourier representation (12:23)

L7.2 Reality condition in Fourier transforms (09:11)

L7.3 Widths and uncertainties (19:13)

L7.4 Shape changes in a wave (16:56)

L7.5 Time evolution of a free particle wavepacket (09:44)

L7.1 Wavepackets and Fourier representation (12:23)

MITOCW | MIT8_04S16_lec07_s1_300k
PROFESSOR: We’ll begin by discussing the wave packets and uncertainty.
So it’s our first look into this Heisenberg uncertainty relationships.
And to begin with, let’s focus it as fixed time, t equals zero.
So we’ll work with packets at t equals zero.
And I will write a particular wave function that you may have at t equals 0, and it’s a superposition of plane waves.
So it would be e to the ikx.
You sum over many of them, so you’re going to sum over k, but you’re going to do it with a weight, and that’s 5k.
And there’s a lot to learn about this, but the physics that is encoded here is that any wave at time equals 0, this psi
of x at time equals 0, can be written as a superposition of states with momentum h bar k.
You remember e to the ikx represents a particle or a wave that carries momentum h bar k.
So this whole idea here of a general wave function being written in this way carries physical meaning for us.
It’s a quantum mechanical meaning, the fact that this kind of wave has momentum.
But this phi of k, however, suppose you know this wave function at time equals 0.
Phi of k is then calculable.
Phi of k can be determined, and that’s the foundation of what’s called Fourier’s theorem, that gives you a formula
for phi of k.
And it’s a very similar formula.
1 over 2 pi, this time an integral over x.
So you take this of psi of x0 that you know and then multiply by e to the minus ikx.
Integrate over x, and out comes this function of k.
So if you know phi of x0, you know phi of k.
You can calculate this interval and you can rewrite phi of x0 as a superposition of plane waves.
So that’s how you would do a Fourier representation.
So somebody can give you an initial wave function, and maybe it’s a sine function or a Gaussian or something,
then what you would do if you wanted to rewrite it in this way, is calculate phi of k, because you know this psi, you
can calculate this integral, at least with a computer.
And once you know phi of k, you have a way of writing psi as a superposition of plane waves.
So we’ve talked about this before, because we were doing wave packets before and we got some intuition about
how you form a wave packet and how it moves.
Now we didn’t put the time dependence here, but that can wait.
What I wish to explain now is how by looking at these expressions, you can understand the uncertainties that you
find on the wave function, position, and momentum uncertainties, how they are related.
So that is our real goal, understanding the role of uncertainties here.
If phi of k has some uncertainty, how is the uncertainty in psi determined?
So that’s what we’re looking for.
So relationship of uncertainties.
Now as before, we will take a phi of k, that we’ve usually be in writing, that depends on k and it’s centered around
some value k0.
It’s some sort of nice, centered function.
And it has then, we say, some uncertainty in the value of the momentum.
That is this signal, this phi of k that we’re using to produce this packet.
It has some uncertainty, it’s not totally sharp, it’s peaked around k0 but not fully sharp.
So the uncertainty is called delta k and it’s some typical width over here.
Delta k is then uncertainty.
Now it’s not the purpose of today’s lecture to make a precise definition of what the uncertainty is.
This will come later.
At this moment, you just want to get the picture and the intuition of what’s going on.
And there is some uncertainty here, perhaps you would say, look at those points where the wave goes from peak
value to half value and see what is the width.
That’s a typical uncertainty.
So all what we’re going to do in these arguments is get for you the intuition.
Therefore, the factors of 2 are not trustable.
If you’re trying to make a precise statement, you must do precise definitions.
And that will come later, probably in about one or two lectures.
So at this moment, that’s the uncertainty, delta k.
And let’s assume that this phi of k is real.
And its peaked around k0 uncertainty delta k.
Now what happens with psi of x?
Well, we had our statements about the stationary phase that you already are practicing with them for this
homework.
If you want to know where this function peaks, you must look where the phase, this phi-- we say it’s real, so it
doesn’t contribute to the phase-- where the phase, which is here, is stationary, given the condition that it should
happen at k0.
The only contribution to the integral is basically around k0.
So in order to get something, you must have a stationary phase, and the phase must be stationary as a function
of k, because you’re integrating over k.
And the phase is kx, the derivative with respect to k of the face is just x, and that must vanish, therefore, so you
expect this to be peaked around x equals zero.
So the x situation, so psi of x0 peaks at x equals 0.
And so you have a picture here.
And if I have a picture, I would say, well it peaks around the x equals 0.
So OK, it’s like that.
And here we’re going to have some uncertainty.
Here is psi of x and 0, and here is x.
And let me mention, I’ve already become fairly imprecise here.
If you were doing this, you probably would run into trouble.
I’ve sort of glossed over a small complication here.
The complication is that this, when I talk about the peaking of psi, and you probably have seen it already, you
have to worry whether psi is real or psi is complex.
So what is this psi here?
Should it be real?
Well actually, it’s not real.
You’ve done, perhaps, in the homework already these integrals, and you see that psi is not real.
So when we say it peaks at x equals 0, how am I supposed to plot psi?
Am I plotting the real part, the imaginary part, the absolute value?
So it’s reasonable to plot the absolute value and to say that psi absolute value peaks at x equals 0.
And there will be some width again here, delta x, width.
And that’s the uncertainty in psi of x.
So the whole point of our discussion for the next 10 minutes is to just try to determine the relation between delta k
and delta x and understand it intuitively.

L7.2 Reality condition in Fourier transforms (09:11)

MITOCW | watch?v=DvFb-D1zJTA
PROFESSOR: We ask, is psi of x, 0 real? And I told you the answer is no. And how would I know that this is
not real? Well, we can take the complex conjugate. And at the end of the day, this will boil
down to some property of phi of k.
You see, you have an expression phi of x in terms of phi of k. So it would not be surprising that
the requirement that psi is real means something about phi of k.
So let’s just say, suppose psi is given by that, then psi x, 0 star, the complex conjugate would
be 1 over square root of 2 pi integral phi of k star e to the minus ikx dk. I conjugated
everything in that equation for psi of x and 0.
Now, you want to compare this with psi of x and 0 to see if it’s real. Or let’s consider what is
the condition that this be real. So I want to simplify here a little more. So what I’m going to do
is going to change variables, by changing k to minus k.
If you prefer to go a little more slowly, you could say you’re going to change k prime-- you’re
going to be a new k, called k prime, equals to minus k. But it’s possible to do it this way.
Now, there’s going to be a couple of changes. Wherever you see k, you’re now going to see
minus k-- so 1 over 2 pi integral phi of minus k. And I’ll just put this star here, not so many
parentheses-- e to the minus ikx becomes ikx. And the dk will go to minus dk, but the order of
integration, that was from minus infinity to plus infinity, would switch. So those two signs
cancel.
So there’s a sign from doing dk to minus dk, and 1 from the limit of integration-- so at the end
of the day, you have dk, and you still have this-- minus infinity to infinity. And you can say, well,
is this equal to-- or what is the condition of for psi to be real? Well, is this equal to 1 over 2 pi
minus phi of k, e to the ikx dk-- is that-- question mark-- is that equal to it?
That would mean that the psi of x, 0 is real, because this thing is just psi of x and 0. So this is a
question mark-- this is a condition. So here you could say, exploring the reality condition–
condition-- when is a psi of x real?
So what must be true is that these two terms must equal each other. So, in fact, this requires–
reality requires that 1 over square root of 2 pi integral from minus infinity to infinity phi of k
minus phi star of minus k, e to the ikx dx is equal to 0.
minus phi star of minus k, e to the ikx dx is equal to 0.
I brought the two terms to one side. Both are of the same type-- they’re integrated against an
e to the ikx. And therefore, we can combine them, and that’s what must be true in order for the
function to be real. And now you can say, so what is it? What’s the answer?
Well, this integral should vanish. Now, this integral should vanish-- it should vanish for all
values of k. So actually, what you want to conclude is that this thing is identically 0.
AUDIENCE: Excuse me, shouldn’t that be dk and not dx?
PROFESSOR: Yes, thank you. Thanks very much.
So this property that this whole integral be equal to 0, you were tempted to conclude that it
means that this thing is equal to 0. And that is correct-- that is a perfectly legal argument. And
it basically-- if you want to express it more precisely, you could base it on the Fourier theorem,
again. These two sets of equalities here are Fourier’s theorem.
And look what this is saying-- this is saying that this quantity has a 0 Fourier transform.
Because how do you do the Fourier transform of a function of k? You multiply by e to the ikx
and integrate. And therefore, this function has a 0 Fourier transform.
So, but if a function has a 0 Fourier transform, the function must be 0. Because already this is
0, and the integral is 0-- 0. So this is absolutely rigorous. And therefore, you get the conclusion
that phi of minus k star must be equal to phi of k, and that’s the condition for reality.
So if a phi of k satisfies this property, that psi of x will be real, and our phi of k doesn’t satisfy
this property, what do you see in this property? Basically, if you have phi that exists for some
value of k, it should also exist for the value of minus k. And in fact, should be the complex
conjugate of the other value.
But here, you have some phis of k, and no phis at minus k. So the phi that we wrote above
doesn’t satisfy this condition. And therefore psi is not real, and it all makes sense.
OK, so basically, if you were plotting not the absolute value, but the real part and the
imaginary parts of psi, you would see some sort of funny waves. I think if you were plotting the
real part, for example, you would see a wave like that. And if you were plotting the imaginary
part, you’d presumably see some other wave like that. And the absolute value, it’s much nicer
and simpler.

L7.3 Widths and uncertainties (19:13)

MITOCW | watch?v=vWGP5dogNm8
PROFESSOR: So we go back to the integral. We think of k. We’ll write it as k naught plus k tilde. And then we
have psi of x0 equal 1 over square root of 2pi e to the ik naught x-- that part goes out–
integral dk tilde phi of k naught plus k tilde e to the ik tilde x dk. OK.
So we’re doing this integral. And now we’re focusing on the integration near k naught, where
the contribution is large. So we write k as k naught plus a little fluctuation. dk will be dk tilde.
Wherever you see a k, you must put k naught plus k tilde. And that’s it.
And why do we have to worry? Well, we basically have now this peak over here, k naught. And
we’re going to be integrating k tilde, which is the fluctuation, all over the width of this profile.
So the relevant region of integration for k tilde is the range from delta k over 2 to minus delta k
over 2. So maybe I’ll make this picture a little bigger.
Here is k naught. And here we’re going to be going and integrate in this region. And since this
is delta k, the relevant region of integration-- integration-- for k tilde is from minus delta k over
2 to delta k over 2. That’s where it’s going to range.
So all the integral has to be localized in the hump. Otherwise, you don’t get any contribution.
So the relevant region of integration for the only variable that is there is just that one.
Now as you vary this k tilde, you’re going to vary the phase. And as the phase changes, well,
there’s some effect [? on ?] [? it. ?] But if x is equal to 0, the phase is stationary, because k
tilde is going to very, but x is equal to 0. No phase is stationary.
And therefore, you will get a substantial answer. And that’s what we know already. For x is
going to 0 or x equal to 0, we’re going to get a substantial answer.
But now think of the phase in general. So for any x that you choose, the phase will range over
some value. So for any x different from 0, the face in the integral will range over minus delta k
over 2x and to delta k over 2x.
You see, x is here. The phase is k tilde x. Whatever x is, since k tilde is going run in this range,
the phase is going to run in that range multiplied by x.
So as you do the integral-- now think you’re doing this integral. You have a nice, real, smooth
function here. And now you have a running phase that you don’t manage to make it stationary.
Because when x is different from 0, this is not going to be stationary. It’s going to vary. But it’s
going to vary from this value to that value. So the total, as you integrate over that peak, your
phase excursion is going to be delta k times x-- total phase excursion is delta k times x.
But then that tells you what can happen. As long as this total phase excursion is very small–
so if x is such that delta k times x is significantly less than 1-- or, in fact, I could say less than
1-- there will be a good contribution if x is such that-- then you will get a contribution.
And the reason is because the phase is not changing much. You are doing your integral, and
the phase is not killing it. On the other hand, if delta k times x-- delta k times x is much bigger
than 1, then as you range over the peak, the phase has done many, many cycles and is going
to kill the integral.
So if k of x is greater than 1, the contribution goes to 0. So let’s then just extract the final
conclusion from this thing. So psi of x 0 will be sizable in an interval x belonging from minus x0
to x0.
So it’s some value here minus x0 to x0. If, even for values as long as x0, this product is still
about 1-- if for delta k times x0, roughly say of value 1, we have this. And therefore the
uncertainty in x would be given by 2x0. So x0 or 2x0, this x0 is basically the uncertainty in x.
And you would get that delta k times delta x is roughly equal to 1-- so delta k delta x roughly
equal to 1.
So I’m dropping factors of 2. In principle here, I should push a 2. But the 2s, or 1s, or pi’s at
this moment are completely unreliable.
But we got to the end of this argument. We have a relation of uncertainties is equal to 1. And
the thing that comes to mind immediately is, why didn’t Fourier invent the uncertainty
principle? Where did we use quantum mechanics here?
The answer is nowhere. We didn’t use quantum mechanics. We found the relation between
wave packets, known to Fourier, known to electrical engineers. The place where quantum
mechanics comes about is when you realize that these waves in quantum mechanics, e to the
ikx represent states with some values of momentum.
So while this is fine and it’s a very important intuition, the step that you can follow with is-- it’s
interesting. And you say that, well, since p, the momentum, is equal to h bar k and that’s
quantum mechanical-- it involves h bar. It’s the whole discussion about these waves of matter
particles carrying momentum.
You can say-- you can multiply or take a delta here. And you would say, delta p is equal to h
bar delta k. So multiplying this equation by an h bar, you would find that delta p, delta x is
roughly h bar. And that’s quantum mechanical.
Now we will make the definitions of delta p and delta x precise and rigorous with precise
definitions. Then there is a precise result, which is very neat, which is that delta x times delta p
is always greater than or equal than h bar over 2. So this is really exact. But for that, we need
to define precisely what we mean by uncertainties, which we will do soon, but not today.
So I think it’s probably a good idea to do an example, a simple example, to illustrate these
relations. And here is one example. You have a phi of k of the form of a step that goes from
delta k over 2 to minus delta k over 2, and height 1 over square root of delta k. That’s phi of k.
It’s 0 otherwise-- 0 here, 0 there. Here is 0. Here is a function of k.
What do you think? Is this psi of x, the psi x corresponding to this phi of k-- is it going to be a
real function or not? Anybody?
AUDIENCE: This equation [? is ?] [? true, ?] [? but-- ?]
PROFESSOR: Is it true or not?
AUDIENCE: I think it is.
PROFESSOR: OK. Yes, you’re right. It is true. This phi of k is real. And whenever you have a value at some k,
there is the same value at minus k. And therefore the star doesn’t matter, because it’s real.
So phi is completely real. So phi of k is equal to phi of minus k. And that should give you a real
psi of x-- correct.
So some psi of x-- have to do the integral-- psi of x0 is 1 over square root of 2 pi minus delta k
over 2 to delta k over 2. The function, which is 1 over delta k in here-- that’s the whole
function.
And the integral was supposed to be from minus infinity to infinity. But since the function only
extends from minus delta k over 2 to plus delta k over 2, you restrict the integral to those
values. So we’ve already got the phi of k and then e to the ikx dx.
Well, the constants go out-- 2 pi delta k. And we have the integral is an integral over x-- no, I’m
sorry. It’s an integral over k. What I’m writing here-- dk, of course. And that gives you e to the
ikx over ix, evaluated between delta k over 2 and minus delta k over 2.
OK, a little simplification gives the final answer. It’s delta k over 2pi sine of delta kx over 2 over
delta kx over 2. So it’s a sine of x over x type function.
It’s a familiar looking curve. It goes like this. It has some value-- it goes down, up, down, up
like that-- symmetric. And here is psi of x and 0. Here is 2 pi over delta k, and minus 2 pi over
delta k here. Sine of x over x looks like that.
So this function already was defined with the delta k. And what is the delta x here? Well, the
delta x is roughly 2 pi over delta k. No, it’s-- you could say it’s this much or half of that. I took [?
it half ?] of that.
It doesn’t matter. It’s approximate that at any rate now. So delta x is this. And therefore the
product delta x, delta k, delta x is about 2 pi.

L7.4 Shape changes in a wave (16:56)

MITOCW | watch?v=50Tla309i7o
PROFESSOR: Next is this phenomenon that when you have a wave packet and it moves it can change shape
and get distorted. And that is a very nice phenomenon that takes place in general and causes
technological complications. And it’s conceptually interesting. So let’s discuss it.
So it’s still wave packets. But now we have to go back and add some time to it. So shape
changes. So we had a psi of x and t is equal to 1 over square root of 2 pi phi of k e to the ikx e
to the minus i omega of kt. And what did we do with this to analyze how it propagates? We
expanded omega of k as omega of k0, which, again, this quantity is centered and peaks
around k0, plus k minus k0 times d omega dk at k0 plus 1/2 k minus k0 squared, the second
omega, dk squared at k0.
And it might seem that this goes on forever. And what did we do before? We looked at this
thing and we did the integral with this term and ignored the next. And with this term, we
discovered that the profile moves with this velocity, the group velocity. Now we want to go back
and at least get an idea of how this term could change the result. And it would change the
result by deforming the shape of the packet. So it is of interest to know, for example, how long
you have to wait before your packet gets totally deformed, or how do you evolve a packet.
So we need to recall these derivatives. So the omega vk is the same as de dp by multiplying
by h bar. And this you’ll remember, was p over m. The edp is p over m and is equal to h bar k
over m. So the second omega, dk squared. I must differentiate the first derivative with respect
to k. So I differentiate the first derivative with respect k. And now I get just h bar over m, which
is quite nice. And the third derivative, the 3 omega, dk cubed, is 0. And therefore, I didn’t have
to worry about these terms. The series terminates. The Taylor series terminates for this stuff.
Yes?
AUDIENCE: The reason this happens is because we’re [INAUDIBLE].
PROFESSOR: That’s right. So of what is it that we get? Well, this term is roughly then 1/2 k minus k0 squared
times h bar over m. And we can go back to the integral that we’re trying to do. We don’t do it
again or not by any means. But just observe what’s going on there. And we have an e to the
minus i omega of kt that we did take into account. But the term that we’re dropping now is a
term that is minus i omega of k, well, whatever we have here, 1/2 k minus k0 squared h bar
over mt.
That’s the phase that we ignored before. But now we’ll just say, that we expect, therefore, that
the shape doesn’t change as long as we can ignore this phase. And this phase would start
changing shape of the object. So our statement is going to be that we have no shapes. So let’s
imagine you started with a packet that sometime t equals 0. And then you let time go by. Well,
there’s some numbers here and time is increasing. At some point, this phase is going to
become unignorable. And it’s going to start affecting everything. But we have no shape
change, or no appreciable shape change, as long as this quantity is much less than 1. So as
long as say, k minus k0 squared h bar over m absolute value of t is much less than 1, no
shape change.
Now it’s convenient to write it in terms of things that are more familiar. So we should estimate
this thing. Now we’re doing estimates in a very direct and rough way here. But look, your
integrals are around k0. And as you remember, they just extend a little bit because it has
some width. So k minus k0, as you do the integral over k, you’re basically saying this thing is
about the size of the uncertainty in k. So I’ll put here delta k squared. Then you’ll have h bar t
over m much less than 1.
Now h bar times delta k is delta p. So this equation is also of the form delta p squared t over h
bar m much less than 1. There’s several forms of this equation that is nice. So this is a
particularly nice form. So if you know the uncertainty and momentum of your packet, or wave
packet, up to what time, you can wait and there’s no big deformation of this wave packet.
Another thing you can do is involve the uncertainty in x. Because, well, delta p delta x is equal
to h bar. So we can do that.
And so with delta p times delta x equal to about h bar, you can write t less than h bar over m
over a delta p squared, which would be h squared delta x squared. I think I’m getting it right.
Yep, so t much less than m over h bar delta x squared. That’s another way you could write this
inequality.
There is one way to write the inequality that you can intuitively feel you understand what’s
happening. And take this form a from a. Write it as delta p t over m is less than h bar over
delta p. And h bar over delta p is delta x. So you go delta p over mt much less than delta x. I
think this is understandable.
Why does the packet change shape? The reason it changes shape is because the group
velocity is not the same for all the frequencies. The packet mostly moves with k0. And we
haven’t rated the group velocity in k0. But if it would have a definite velocity, we would have a
definite momentum. But that’s not possible. These things have uncertainty in momentum. And
they have uncertainty in k that we use it to write it. So different parts of the wave can move
with different velocities, different group velocities. The group velocity you evaluated at k0. But
some part of the packet is propagating with group velocities that are near k0 but not exactly
there.
So you have a dispersion in the velocity, which is an uncertainty in the velocity or an
uncertainty in the momentum. Think, the momentum divided by mass is velocity. So here it is,
an uncertainty in the velocity. And if you multiply the uncertainty in the velocity times this time
that you can wait, then the change in shape is not much if this product, which is the difference
of how one part moves with respect to the other, the difference of relative term, is still smaller
than the uncertainty that controls the shape of the packet. So the packet has a delta x.
And as long as this part, the left part of the packet, then the top of the packet, the difference of
velocities times the time, it just still compared to delta x is small, then the thing doesn’t change
much. So I think this is one neat way of seeing what an equation that you sometimes use in
this form, sometimes use in in this form-- it’s just things that you can use in different ways.
So for example, I can do this a little exercise. If you have delta x equals 10 to the minus 10
meters, that’s atomic size for an electron. How long does it remain localized? So you have an
electron. And you produce a packet. You localize it to the size of an atom. How long can you
wait before this electron is just all over the room? Well, when we say this t, and we say this
time, we’re basically saying that it’s roughly still there. Maybe it grew 20%, 30%. But what’s the
rough time that you can expect that it stays there?
So in this case, we can use just this formula. And we say the time could be approximately m
over h bar delta x squared. It’s fun to see the numbers. You would calculate it with mc squared
over h bar c times delta x over c, this squared. The answer is about 10 to the minus 16
seconds, not much.
This is a practical issue in accelerators as well. Particle physics accelerators, they concern
bunches, a little bunch of protons in the LHC. It’s a little cylinder in which the wave functions of
the protons are all collimated very thin, short, a couple of centimeters short. And after going
around many times around the accelerator, they always have to be compressed and kept
back, sent back to shape. Because just of diffusion, these things just propagate. And so it’s a
rather important thing.

L7.5 Time evolution of a free particle wavepacket (09:44)

MITOCW | watch?v=ipXNYnO7yRk
PROFESSOR: Time evolution of a free particle wave packet. So, suppose you know psi of x and 0. Suppose
you know psi of x and 0.
So what do you do next, if you want to calculate psi of x and t? Well, the first step, step one, is
calculate phi of k. So you have phi of k is equal 1 over square root of 2 pi integral dx psi of x, 0
e to the minus ikx. So you must do this integral.
Step two-- step two-- with this, now rewrite and say that psi of x, 0 is 1 over square root of 2 pi
dk e to the-- no, I’m sorry-- phi of k, e to the ikx. So that has achieved our rewriting of psi of x
and 0, which was an arbitrary function as a superposition of plane waves.
Step three is the most fun step of all. Step three-- you look at this, and then you say, well, I
know now what psi of x and t is. Evolving this is as easy as doing nothing. What I must do here
is 1 over square root of 2 pi-- just copy this-- dk, phi of k, e to the ikx. And I put here minus
omega of k, t.
And I remind you that h bar omega of k is the energy, and it’s equal to h squared k squared
over 2m. This is our free particle. And I claim that, just by writing this, I’ve solved the
Schrodinger equation and I’ve time-evolved everything. The answer is there-- I didn’t have to
solve the differential equation, or-- that’s it. That’s the answer.
Claim this is the answer. And the reason is important. If you come equipped with a
Schrodinger equation, what should you check, that ih bar d psi dt is equal to h psi-- which is
minus h-- squared over 2m, d second, dx squared psi. Well, you can add with ih d dt on this
thing. And you remember all that happens is that they all concentrate on this thing.
And it solves this, because it’s a plane wave. So this thing, this psi of x and t, solves the
Schrodinger equation. It’s a superposition of plane waves, each of which solves the free
Schrodinger equation.
So, we also mention that since the Schrodinger equation is first ordered in time, if you know
the wave function at one time, and you solve it, you get the wave function at any time. So here
is a solution that is a solution of the Schrodinger equation. But at time equals 0-- this is 0-- and
we reduce this to psi of x and 0.
So it has the right condition. Not only solve the Schrodinger equation, but it reduces to the
So it has the right condition. Not only solve the Schrodinger equation, but it reduces to the
right thing. So it is the answer. And we could say-- we could say that there is a step four, which
is-- step four would be do the k integral.
And sometimes it’s possible. You see, in here, once you have this phi of k, maybe you can just
look at it and say, oh, yeah, I can do this k integral and get psi of x and 0, recover what I know.
I know how to do-- this integral is a little harder, because k appears a little more complicated.
But it has the whole answer to the problem.
I think one should definitely focus on this and appreciate that, with zero effort and Fourier’s
theorem, you’re managing to solve the propagation of any initial wave function for all times. So
there will be an exercise in the homework, which is called evolving the free Gaussian–
Gaussian.
So you take a psi a of x and time equals 0 to be e to the minus x squared over 4a squared
over 2 pi to the 1/4-- that’s for normalization-- square root of a. And so what is this? This is a
psi-- this is a Gaussian-- and the uncertainty’s roughly a-- is that right? Delta x is about a,
because that controls the width of the Gaussian.
And now, you have a Gaussian that you have to evolve. And what’s going to happen with it?
This Gaussian, as written, doesn’t represent a moving Gaussian. To be a moving Gaussian,
you would like to see maybe things of [? the ?] from e to the ipx that represent waves with
momentum.
So I don’t see anything like that in this wave function. So this must be a Gaussian that is just
sitting here. And what is it going to do in time?
Well, it’s presumably going to spread out. So the width is going to change in time. There’s
going to be a time in which the shape changes. Will it be similar to what you have here? Yes.
The time will be related.
So time for changes. So there will be some relevant time in this problem for which the width
starts to change. And it will be related to ma squared over h bar.
In fact, you will find that with a 2, the formulas look very, very neat. And that’s the relevant time
for the formation of the Gaussian.
So you will do those four steps. They’re all doable for Gaussians. And you’ll find the Fourier
transform, which is another Gaussian. Then you will put the right things and then try to do the
integral back. The answer is a bit messy for psi, but not messy for psi squared, which is what
we typically ask you to find.

  • 9
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值