Lecture 11: Uncertainty (cont.). Stationary states. Particle on a circle.

L11.1 Energy eigenstates for particle on a circle (16:12)

L11.2 Infinite square well energy eigenstates (13:15)

L11.3 Nodes and symmetries of the infinite square well eigenstates. (09:43)

L11.4 Finite square well. Setting up the problem. (22:30)

L11.5 Finite square well energy eigenstates (10:39)

L11.1 Energy eigenstates for particle on a circle (16:12)

MITOCW | watch?v=e0C1Bkcjrdc
PROFESSOR: Last time we talked about particle on a circle. Today the whole lecture is going to be
developed to solving Schrodinger’s equation. This is very important, has lots of applications,
and begins to give you the insight that you need to the solutions. So we’re going to be solving
this equation all through this lecture.
And let me remind you what with had with a particle on a circle. The circle is segment 0 to L,
with L and 0 identified. More properly we actually think of the whole x-axis with the
identification that two points related in this way that differ by L, or therefore for 2L, 3L, are the
same point.
As a result, we want wave functions that have this periodicity. And that implies the same
periodicity for the derivatives as well. We looked at the Schrodinger equation and we proved
that the energy of any solution has to be positive or 0. And therefore the differential equation,
the Schrodinger differential equation, can be read then as minus k squared psi, where k
squared is this quantity and it’s positive, so k is a real number. That makes sense.
And finally, once you have this equation, you know that if the second derivative of a function is
proportional to minus the function, the solution are trigonometric functions or exponentials.
And we decided to go for exponentials, that they are perhaps a little more understandable,
though we will go back to them.
Now that’s where we stopped last time. And now we apply the periodicity condition. So we
must have e to the ik x plus L equal to e to the ikx. If you cancel the e to the ikx on both sides,
you get to e to the ikL must be equal to 1, which forces kL to be a multiple of pi. That is, kL
equal 2 pi n-- of 2 pi, I’m sorry-- 2 pi n, where n is an integer.
So those are the values of k. We’ll write them slightly differently. We’ll write kn with the
subscript n to represent the k determined by the integer n. So it will be 2 pi n over L. Now from
that equation, for k squared equal 2mE over h squared, you get e is equal to h squared k
squared over 2m. And k in these solutions represents therefore the momentum. That is, the
momentum Pn is h bar kn, and it’s 2 pi h bar n over L. And the energies associated with
solutions with kn value is En would be h squared kn squared, so 4 pi squared n squared over
L squared over 2m. So this is equal to 2 pi squared h squared n squared over m L squared.
Those are numbers. It’s good to have them. Our solution is psi n of x is equal to e to the i, or is
proportional to, e to the i knx. So far so good.
But we can now normalize this thing. This is the beauty of the problem of a particle on a circle.
If you have a particle in free space, psi squared is equal to 1 and the integral is infinite. On the
other hand, these ones are normalizable. That is, we can demand that the infinite over the
circle of psi n squared be equal to 1.
So how do we do that? Well I’ll write it a little more explicitly here. Psi n of x will be some
constant times e to the iknx. And therefore this thing is the integral from 0 to L dx of the
constant squared. The constant can be chosen to be real. N squared times psi n squared,
which is-- this exponential squared is just 1. This is 1. So it just gives you L times N squared is
equal to 1. So N is equal to 1 over square root of L.
And finally, our psi n’s of x are 1 over square root of L e to the iknx or 1 over square root of L e
to the 2 pi inx over L. Oops. All right.
So these are our wave functions. These are our energy eigenstates. Our full stationary states,
where we’re finding stationary states-- stationary states have a psi of x times a time
dependence. The time dependence is e to the minus i e-- so you could say that psi n of x and
t, the full stationary state, is psi n of x times e to the minus i e n t over h bar. And that solves
the full Schrodinger equation. That’s our stationary state.
So one thing that should be emphasized here is the range of the integers. n is an integer and
we better realize if there are some exceptions. Maybe just the positive? Is 0 included? Is 0 not
included? And here, it’s really as stated here. It’s all the integers, n from minus infinity to plus
infinity. All of them must be included.
The reason we can understand that is that the momentum of each of these states, the
momentum is 2 pi h n over L. And therefore these are all states of different momentum.
There’s no question that these are different states. It cannot be that one is just the same as
another one. They have different momentum. They represent the particle going with some
momentum around the circle, and that momentum is quantified by n and it could be in the
positive direction or negative direction.
Now you could be suspicious about n equals 0. But there’s actually nothing to be suspicious
about it. It’s surprising. But psi 0 is 1 over square root of L, has no x dependence. And
therefore it has 0 energy. And that’s-- I’m sorry, here. There’s some psi missing. The second
derivative of a constant is 0. And if e is equal to 0, that’s a consistent solution. The constant is
important.
And now you also realize that psi, you have a nice phenomenon, that psi minus 1 and psi 1,
for example, they correspond to n equals 1 and minus 1, have the same energy. Because
energy depends on n squared, so these are degenerate states with energy E1 equal to E
minus 1. And so are psi 2 and psi minus 2. And of course just psi minus k and psi k. They are
degenerate states.
And now this hits into a property that is going to be important in the future about degenerate
states. Whenever somebody gives you a couple of degenerate states, you know they have the
same energy. But you must not stop there. If they are degenerate states and there are two
states, it means that they are not the same. So there must be something physical about them
that distinguishes them. Whenever you have degenerate states, you have to work until you
figure out what is different about one state and the other.
And here we got the answer. The answer is simply that they are degenerate states with a
different momentum. So the momentum is an observable that distinguishes those degenerate
states. In fact, as we’ve written here, p on psi n of x is equal to Pn psi n. And P n given by this
quantity. OK.
Our eigenstates are orthonormal. They’re eigenstates. So why are they orthonormal? They
are eigenstates of a Hermitian operator with different eigenvalues. They’re eigenstates of p
with different eigenvalues. So they’re orthonormal.
The argument with the energy would have not worked out so well because there you have
degenerate states. So these two states are degenerate with respect to energy. So you could
wonder, how do you know they are orthogonal? But in this case it’s simple. They have different
momentum. Momentum is a Hermitian operator, and it should be orthogonal.
So the states are orthogonal. They are complete. You could write any wave function of the
circle as a superposition of those psi n’s. So any psi of x periodic can be written as psi of x the
sum a n psi n’s over all the integers .
And one last remark. We could have worked with sines and cosines. And therefore we could
have worked with psi k plus psi minus k. This psi k and psi minus k have the same energy.
Therefore this sum is an energy eigenstate of that same energy. The Hamiltonian acting on
psi k gives you the energy times psi k. Here, the same energy times psi minus k, so this is an
energy eigenstate. And this is proportional to cosine of kx.
And this is an energy eigenstate you know, because two derivatives of a cosine will give you
back that cosine. Similarly, psi k minus psi of minus k is proportional to sine of kx. And that’s
also an energy eigenstate. Both are energy eigenstates.
So this is kind of the way you can reformulate Fourier’s theorem here. You could say anything
can be written as a superposition of all the exponentials, including the exponential with n
equals 0, which is just a constant. Or alternatively, everything could be written in terms of sines
and cosines, which is another way of doing the Fourier theorem.
These are energy eigenstates, but they’re not P eigenstates anymore. This, when you take a
derivative, becomes a sine. When this, you take a derivative, becomes a cosine. They’re not
energy. They’re not momentum eigenstates.
So you can work with momentum eigenstates, you can work with energy eigenstates. It’s your
choice. It’s probably easier to work just with momentum, I can say. So that’s it for the particle
in a circle. We have three problems to solve today. Particle in a circle, particle in a box, and
particle in a finite well.

L11.2 Infinite square well energy eigenstates (13:15)

MITOCW | watch?v=gMHkf-107Sw
PROFESSOR: Square well. So what is this problem? This is the problem of having a particle that can actually
just move on a segment, like it can move on this eraser, just from the left to the right. It cannot
escape here.
So the way we represent it is the interval 0 to a on the x-axis. And there’s going to be two
walls, one wall to the left and one wall to the right, and no potential in between. That is, I write
the potential V of x as 0, for x in between a and 0, and infinity for x less than or equal to 0, and
x greater than or equal to a. So basically the particle can move from 0 to a, and nowhere else.
The potential is infinity.
Now, this problem, meaning that the wave function-- the particle cannot be outside the
interval, means that the wave function must vanish outside the interval. And you could say,
how do you know? Well, if the potential is close to infinite amount of energy to be there, so the
particle cannot really be there if it’s really infinite energy that you need. You will see in the finite
square well that the particle has probability to be in regions where it classically cannot be. But
that probability will go to 0 if the potential is infinite.
So we can think of it as a limit and we will reconfirm that. But in fact, if the potential is infinity,
we will take it to mean that psi of x is equal to 0 for x less than 0 and for x greater than a. I am
putting this equals or-- there are many ways of doing this. If this function, as this continues,
you have a wall at a, is the potential 0 at a or is it infinity? Well it doesn’t quite matter.
The issue is that the wave function is 0 here, is 0 there, and we’ve said that the wave function
must be continuous. So it should be 0 by that time you’re at 0 or at a. So therefore we will take
psi of 0 to be 0, and psi of a to be 0 by continuity.
So we discuss why the wave function has to be continuous. If the wave function is not
continuous, the second derivative of the wave function is terribly singular. It’s like a derivative
of a delta function, which is an impossible situation.
So the wave function, we will take it to vanish at these two places, and this is what is called a
hard wall. So what is the Schrodinger equation? The Schrodinger equation is, again, a free
Schrodinger equation.
Nothing, no potential here, so it’s the same Schrodinger equation we had there, psi double
prime equals minus 2mE over h squared, psi of x. Or, again, minus k squared psi of x. Let’s
solve this. So how do we do it?
Well it’s, again, a very simple equation, but this time it’s conveniences-- we don’t have a circle
or periodicity to use sines and cosines. So I’ll take psi of x to be c1 cosine of kx plus c2 sine of
kx. But the wave function must vanish at 0. And at 0, the cosine is 1, so you get c1. And the
sine is 0, so this must be 0, so c1 is gone. There’s no c1 contribution to the solution.
So psi of x is c2 sine of kx. But we’re not done. We need this function to vanish at the other
side. So psi of x equals a must be 0, and that c2 sine of ka must be 0.
And therefore we realize that ka must be equal to a multiple of pi because sine vanishes for 0,
pi, 2 pi, 3 pi, minus pi, minus 2 pi, minus 3 pi, all the multiples of pi. And therefore we will write
kn equals 2 pi n-- not 2 pi n. Pi n over a.
OK, well, let me ask you, what should we take for n? All integers? Should we skip some? We
took all integers for the circle, but should we take all integers here?
So what happens here, n equals 0. What’s the problem with n equals 0? n equals 0, k equals
0, the wave function vanishes. Well, wave function vanishing is really bad because there is no
particle then. There is nowhere in the probability to find the particle.
So n equals 0 is not allowed, for sure. n equals 0, no. So why did we allow it, n equals 0, in the
circle? In the circle for n equals 0, exponential doesn’t vanish. It’s a constant and that constant
is a fine wave function.
0 is not fine, but the constant is good. But n equals 0 is not. So how about positive ends or
negative ends. And here comes the problem, see we’re getting to it. For n equals minus 2 or
for n equals 2.
So in one case, k is a number. And in the other case, k is the opposite sign number. And sine
of a number, or minus a number, that number goes out. So if you have a sine of minus kx,
that’s minus sine of kx. And two wave functions that differ by a sign are the same wave
function, physically. There’s nothing different. They could differ by an i and other things.
So when you pick negative n minus 1, or pick n equals plus 1, you get the same wave function,
but just different by a sign. So it’s not new. So in this case, it’s very interesting that we must
restrict ourselves. We can correct all this and just say n equals 1, 2, 3, all the way to infinity.
The wave function, then, is psi n of x, is proportional to sine of n pi x over a. And you look at it
and you say, yes, that looks nice. For x equals 0, it vanishes. For x equals a, it vanishes. n and
minus n would give me the same wave function up to a sine.
So this is good. I just have to normalize it. And normalizing it would be done by putting an n
here. And then the integral psi n squared dx from 0 to a only would be n squared integral from
0 to a dx of sine squared n pi x over a.
Now, you can do this integral by calculation. And our sine squared is written in terms of a
double angle cosine of double angle plus a 1/2. The intuition with these things are that if you’re
integrating over the right interval that contains an integer number of cycles of the sine
squared, then the sine squared has average 1/2. Because sine squared plus cosine squared
is equal to 1. So you don’t have to do the interval in general. This is n squared times 1/2 times
the length of the interval, which is a.
And therefore n squared, this is equal to 1, and therefore n is equal to square root of 2/a and
we can write now our solutions. Our solutions are m psi n of x equals the square root of 2/a
sine n pi x over a. And n equals 1, 2, up to infinity. And En is equal to h bar squared, k
squared, so pi squared, n squared, a squared, to m.
That’s it for the solutions of-- are there degeneracies? No. Every energy state is different
because there’s any single 1, 2, 3, infinity, each one has more energy than the next. No, I’m
sorry, the energy increases as you increase n. The energy levels actually become more and
more spaced out.
And the last thing I want to do with this box is to look at the states and see how they look and
gather some important properties that are going to be very relevant soon.

L11.3 Nodes and symmetries of the infinite square well eigenstates. (09:43)

MITOCW | watch?v=x_ngaeI00qU
PROFESSOR: Here is x. And here is a. Various copies of the x-axis. For the ground state, what is the lowest
energy state? It’s not zero energy, because n begins with 1. So it’s this. The lowest energy
state is a sine. So the wave function looks like this. This corresponds to sine. 1. Or n equals 1.
The next one corresponds to n equals 2, and begins as a sine. And it just goes up like this.
You add half a wave each time. Remember, we quantize k a with n pi. So each time that you
increase n, you’re adding pi to k a. So the phase, you see, you have sine of kx. So you have
sine that goes from 0 up to k a. And k a is equal to n pi. So you go from 0 to pi, from 0 to 2 pi,
then from 0 to 3 pi. So it would be one up, one down, like that. And I could do one more. This
one would be with four cycles, two, three, four. So this is psi 1, psi 2, psi 3, and psi 4. Wave
functions do more and more things.
So what can we learn from this wave function? There are several things that we need to
understand. So one important thing is that the wave function, these are all normalizable wave
functions. The ground state-- this is the ground state-- has no nodes. A node, in a wave
function, is called the point where the wave function vanishes. But it’s not the endpoints or the
points at infinity, if you could have a range that goes up to infinity. It’s an interior point that
vanishes. And the ground state has no nodes.
So a node, node, so zero of the wave function, not at the end of the domain. And of the
domain. Because if we included that, I would have to say that the ground states has two nodes
already, you’ll see, around 0. But the 0 at the end of the domain should not be counted as a
node. Nodes are the zeros inside. And look. This has no nodes, and it’s a general fact about
states of potentials. The next excited state has one node. It’s here. The next has two nodes,
and then the next is three nodes.
So the number of nodes of the wave function increases in potential. You have more and more
wave functions with higher and higher excited states, and the number of nodes increases one
by one on each solution. That’s actually a theorem that is valid for general potentials that have
bound states. Bound states are states that are normalizable. So the decay at infinity. You see,
a state that is not normalizable, like a plane, where it is not a bound state. It exists all over.
And it’s a general theorem that this phase, this one-dimensional potentials, whenever you
have bound states, the number of nodes increases with the energy of the eigenstate. We will
see a lot of evidence for this as we move along the course, and a little bit of a proof. Not a very
rigorous proof.
The other thing I want to comment on this thing that is extremely important is the issue of
symmetry. This potential for simplicity, to write everything nicely, was written from 0 to a. So all
the wave functions are sine of n pi x over a. But in some ways, it perhaps would have been
better to put the 0 here. And you say, why? What difference does it make? Well, you have a 0
at the middle of the interval, the potential and the domain of the wave function are symmetric
with respect to x going to minus x.
So actually, when you look at the wave functions thinking you can rethink this as an infinite box
from a over 2 to minus a over 2, and the solutions, you just copy them, and you see now, this
line that I drew in the middle, the ground state is symmetric. The next state is anti-symmetric
with respect to the midpoint. The next state is now symmetric. And the following one, antisymmetric.
So this is also a true fact. If you have bound states of a symmetric potential-- I will prove this
one, probably on Wednesday. A symmetric potential is a potential for which V of minus x is V
of x. Bound states of a symmetric potential are either odd or even. This is not a completely
simple thing to prove. We will prove it, but you need, in fact, another result. It will be in the
homework. Not this week’s homework, but next week’s homework. In fact, homework that is
due this week is due on Friday.
So the bound states of a symmetric potential, a potential that satisfies this, are either odd or
even. And that’s exactly what you see here. That’s not a coincidence. It’s a true fact. The
number of nodes increase. And the other fact that is very important, of bound states, of onedimensional potentials-- supremely important fact. No degeneracies. If you have a bound state
of a potential that is either localized like this or goes to infinity, there are no degenerate energy
eigenstates. Each energy eigenstate here, there was no degeneracy.
Now, that is violated by our particle in a circle. The particle in the circle did have degenerate
energy eigenstates. But as you will see, when you have a particle in a circle, you cannot prove
that theorem. This theorem is valid for particles in infinitely-- not in a circle. For x’s that go from
minus infinity to infinity or x’s with vanishing conditions at some hard walls. In those cases, it’s
true.
So, look, you’re seeing at this moment the beginning of very important general results, of very
fundamental general results that allow you to understand the structure of the wave function in
general. We’re illustrating it here, but they are very much, truly now, general potential. So what
are they? For one-dimensional potential unbound states, no degeneracy, number of nodes
increasing one by one. If the potential is symmetric, the wave functions are either even or odd.

L11.4 Finite square well. Setting up the problem. (22:30)

MITOCW | watch?v=CdAKFagtXpQ
BARTON
ZWIEBACH:
Finite square well. So this brings us also to a little common aside. So far, we could find every
solution. Now we’re going to write the equations for the finite square well, and we’re not going
to be able to find the solution. But we’re going to understand the solution. So you’re going to
enjoy a little-- mathematicians usually say it’s the most important thing, understanding the
solution. Finding it, it’s no big deal.
But we’re physicists as well. So we sometimes have to find the solutions. Even if we don’t
understand them very well, it’s nice to find them. And then you’re going to use numerical
methods, and this is the part of the course where you’re going to be using numerical methods
a lot.
Here is the finite square well, and now we draw it symmetrically. Here it is. Here is x.
We’re drawing the potential V of x. It extends from a to minus a. It’s 0. This is the 0 of the
potential. It’s here.
And it goes down. The potential is negative here. Its value is minus V0 with V0 positive.
And then a possible energy for a bound state-- we’re going to look for bound states. Bound
states are normalizable states, normalizable solutions of the Schrodinger equation. So we’re
going to look for them. Look for bound states.
And they have energy less than 0. So something that has energy less than 0 is bound. You
would have to give it some energy to put it at 0 energy, and the particle could escape.
The other thing about the bound state is that it will be some probability to find it here. Very little
probability to find it in the forbidden region. And this energy, which is negative, it’s somewhere
here. We don’t know what are the possible energies, but we will assume there’s some energy
that is negative, that is there. And that’s the energy of the solution.
Let me write the equation again. The equation is psi double prime is minus 2m over h bar
squared, E minus V of x times psi. This is the Schrodinger equation. You recognize it if you
multiply h squared here, 2m there. And we’ve been solving already two examples where there
was no potential, but finally, there is a potential.
So this is the energy of the particle. The energy of the particle can be interpreted as the
potential energy plus the kinetic energy. Think intuitively here. If you have some energy over
potential energy plus the kinetic energy. Think intuitively here. If you have some energy over
here-- this is the potential energy. Well, all this much is kinetic energy.
On the other hand, in this region, the energy is smaller than the potential energy. So it has
negative kinetic energy, which is classically not understandable. And in quantum mechanics, it
just will have some probability of being here, but that probability will go down and eventually go
to 0 in such a way that the wave function is normalizable.
So this is a very mysterious thing that happens here, that the wave function will not be just
over here, but it will leak. And it leaks because there’s a finite discontinuity. If you take the
barrier to be infinitely high, it would leak so little that eventually it would not leak.
The wave function would vanish there. And it will be the end of the story, and you’re back to
the infinite square well. So the infinite square well is a limit of this as V0 goes to minus infinity.
OK, so a few numbers we can put in this graph. E, and this-- what is the energy difference
here? It’s E minus minus V0 , which is V0 plus E. And many times because E is negative, we’ll
write it as V0 minus absolute value of E. A negative number is equal to minus its absolute
value.
So how about this whole constant here? Well, my tongue slipped, and I said this constant, but
it’s V of x. So what do you mean a constant? Well, the potential is piecewise constant.
So actually, we are not in such difficult situation because in this region, the potential is a
constant. In this region, the potential is a constant. So this is the constant here, and we wish to
understand what it is and what are the sines of this constant. This constant, that we call alpha-

  • see-- is going to be-- let’s see what it is, the different circumstances.
    Suppose you are here. The energy is bigger than the potential. So energy minus the potential
    is positive, and the constant is negative. So alpha is negative for x less than a. If it’s negative
    and it’s a constant, you’re going to have trigonometric solutions for x, absolute value less than
    a, so trig.
    On the other region, alpha will be positive for x greater than a, and you will have real
    exponentials of-- I’ll just write exponentials. So E to the minus 3x, E to the 5x, things like that.
    This is the difference between trigonometric and real exponential solutions depend on the
    sines.
    So we’re going to have to impose boundary conditions as well because we’re going to solve
    the equation here inside with one value of alpha and then outside with another value of alpha.
    And then we’re going to match them. So that’s how this will go.
    Now in this process, somehow the energy will be fixed to some value, some allowed values.
    There’s a counting we could do to understand that, and we’ll probably do it next time. At this
    moment, we’ll just proceed. But we imagine there must be a quantization because in the limit
    as V0 goes to infinity and the potential well becomes infinitely deep, you’re back to an infinite
    square well that has quantized energies that we calculated. So that should be quantized, and it
    should be no problem
    OK, ready to do some work? Let’s-- Yes?
    AUDIENCE: So when alpha is 0 and you get polynomial solutions, does that case not matter?
    BARTON
    ZWIEBACH:
    When alpha is 0-- well, alpha is going to be never 0. You see, either E is less than the potential
    or is better than the potential. So you’re not going to get alpha equals 0.
    You could say, do we have some energy maybe here or here? Well, you could have those
    energies, in which case you will see what happens. It’s not quite polynomial solutions.
    There’s one property about potentials that actually is in the homework due this week, which is
    that there cannot be solutions of the Schrodinger equation with less energy than the minimum
    of the potential. You have to have more energy than the minimum of the potential. So alpha
    equal to 0 is not going to show up in our analysis.
    OK, so let’s begin. Moreover, we have to use this result. The potential is symmetric,
    completely symmetric, so there are going to be even solutions and odd solutions. So let’s
    consider the even solutions. Solutions. So those are solutions. Psi of minus x is equal to psi of
    x.
    Now, you will see how I solve this thing now, and the lesson of all of this is the relevance of
    unit-free numbers. Unit-free numbers are going to be your best friends in solving these
    equations. So it will look like I’m not solving anything except making more and more
    definitions, and all of the sudden, the solution will be there.
    And it’s a power of notation as well. This problem can be very messy if you don’t have the right
    notation. If you were solving it alone, if we would stop the lecture now and you would go home,
    you would probably find something very messy for quite a bit. And then maybe you clean it up
    little by little, and eventually, something nice shows up.
    So here’s what we’re going to do. We’re solving for x in between a and minus a, even
    solutions. So what does the equation look like? d second psi d x squared is minus 2m over h
    squared E minus V of x-- in that region, the potential is minus V0. So this is minus 2m over h
    squared, V0 plus E, which I write as minus absolute value of E, psi. And I forgot a psi here.
    OK. V0 is positive. Minus V0 is going down, and V0 minus the absolute value of E is positive.
    So this whole quantity over here is positive.
    And here it comes, first definition. I will define k squared to be that quantity-- 2m over h
    squared V0 minus absolute value of E. And that’s greater than 0 in this region, as we’re trying
    to solve, and I’ll call this equation one.
    And the differential equation has become psi double prime is minus k psi. So the solutions are
    simple. It’s trigonometrics, as we said, and the only solution-- k squared, I’m sorry. k squared–
    and the only solution that is possible, because it’s a symmetric thing, is cosine of kx. So psi of
    x is going to be cosine of kx, and that will hold from a to minus a. End of story, actually, for that
    part of the potential.
    You could ask-- one second. You could say, you’re going to normalize these things, aren’t
    you? Well, the fact that I won’t normalize them, it’s just a lot of work, and it’s a little messy. But
    that’s no problem.
    You see, you’re finding energy eigenstates, and by definition, solving the differential equation
    is not going to give you a normalization. So this is a good solution of the differential equation,
    and let’s leave it at that. This we’ll call solution two.
    How about the region x greater than a? Well, what does the differential equation look like?
    Well, it looks like psi double prime is equal to minus 2, m over h squared, E psi because the
    potential is 0. V0 outside. x equals a.
    And here again, you want to look at the equation and know the sine. So maybe better to put
    the absolute value here. So this is 2m absolute value of E over h squared psi.
    And one more definition-- kappa squared is going to be 2mE over h squared. That’s equation
    number three. The equation has become psi double prime equals kappa squared psi, and the
    solutions for that are exponentials. Solutions are psi-- goes like E to the plus minus kappa x.
    You see the solution we’re constructing is symmetric. It’s even. So let’s worry just about one
    side. If one side works, the other side will work as well.
    So I will just write that for psi of x is equal to the minus kappa x. That’s a solution for x greater
    than a. If I just did that, I would be making a mistake.
    And the reason is that yes, I don’t care about the normalization of the wave function, but by
    not putting a number here, I’m selecting some particular normalization. And The wave function
    must be continuous and satisfy all these nice things. So yes, here I can maybe not put a
    constant, but here, already, I must put a constant.
    It may be needed to match the boundary conditions. I cannot ignore it here. So I must put the
    constant a that I don’t know, and that’s going to be equation number four.
    Now, look at your definitions. k squared for a trigonometric, kappa-- many people use kappa
    for things that go with exponentials. But look, k squared and kappa squared satisfy a very nice
    relation. If you add them up-- k squared plus kappa squared-- the energy part cancels, and
    you get 2mV0, which is positive, over h squared.
    Well, that’s not so bad, but we want to keep defining things. How can I make this really nice? If
    it didn’t have units, it would be much nicer. This is full of units.
    k times a length has no units, and kappa times a length has no unit. So multiply by a squared,
    and you have k squared a squared plus kappa squared a squared is equal to 2mV0 a squared
    over h squared.
    Now, say, well yes, this looks nice. So let’s make the new definitions. So don’t lose track of
    what we are doing.
    We need to find the energy. That’s basically what we want. What are the possible energies?
    And we already included two constants-- k and kappa- and they have these properties here.
    So let me define psi to be kappa a, and it will be defined to be positive. Kappa is defined to be
    positive, and k is defined to be positive. eta, you will define it to be ka. a It’s unit-free. No units.
    And from that equation, now we have eta squared plus psi squared is equal to the right-hand
    side, which I will call z0 squared. So z0 squared-- that’s another definition-- is 2mV0 a squared
    over h squared. This is the list of your definitions.
    OK. What did we do? We traded kappa and k that control the behavior of the wave function-- k
    inside the well, kappa outside the well-- we traded them for eta and psi, unit-free. And a new
    constant came up, z0. What is z0? Well, z0 is a very interesting constant. It’s a number that
    you can construct out of the parameters of your potential.
    It involves V0 and the width. If V0 is very large, z0 is large. If the width is very big, z0 is big. If
    the potential is shallow or very narrow, z0 is small.
    But the most important thing about z0 is that it will give you the number of bound states. If z0
    is very big, it’s a very deep potential, we’ll have lots of bound states. If z0 is very shallow, there
    will be one bound state, no more. You will see it today.
    But z0 controls the number of bound states. And this is its role, and it will be very important–
    these dimensionless quantities and number. If somebody says, I have a potential with z0
    equals 5, you can tell immediately three bound states or some number of bound states. That’s
    the nice thing about z0. And this is a very nice-looking equation, this equation of a circle in the
    8x psi plane.

L11.5 Finite square well energy eigenstates (10:39)

MITOCW | watch?v=jd4es6Bo600
PROFESSOR: Find our final solution, we just have to match the equations. So Psi continues at x equals a.
And what do we have? Well from two, you have cosine of ka. And from four you would have a
equals e to the minus ka. This is the value of this-- so the interior solution at x equals a must
match the value of the exterior solution of k equals a. Psi prime must be continuous at x
equals a as well.
Well what is the derivative of this function? It’s minus the sine of this. So it’s minus k sine of kx,
that becomes ka, is equal to the derivative of that one, which is minus Kappa A e to that minus
Kappa little a. Two equations, and how many unknowns? Well there’s A and some information
about Kappa and k. And the easiest way to eliminate that is to divide them. So you divide the
bottom equation by this equation.
So what do we get? Divide the bottom by the top. Minus k and and the minuses cancel, we
can cancel those minus signs and you get k tan ka is equal to Kappa. But you already are
convinced, I hope, on the idea that we should not use equations that have units. So I will
multiply by little a and a little a to get a [INAUDIBLE] size, and therefore, the right hand side
becomes Xi equals, and the left side become Eta tan Eta.
OK, I want to make a little comment about these quantities already. So all the problem has
turned out into the following. You were given a potential and that determines a number z0. If
you know the width and everything, you know z0. Now you have to calculate Eta and Xi. If you
know either Eta or Xi, you know Kappa or k. And if you know either k or Kappa, since you know
v0, you will know the energy.
So it’s kind of neat to express this more clearly, and I think it’s maybe easier if one uses Xi.
And look at Xi squared is Kappa squared times a squared. And what is Kappa squared, it’s
over there. 2m absolute value of e, a squared over h bar squared. Now you want to find e,
you’re going to get in some units. Even e is nice to have it without units. So I will multiply and
divide by v0. 2m v0 a squared over h squared, absolute value of e over v0.
After all, you probably prefer to know e over v0, which tells you how proportional the energy is
to the depth of the potential. And this is your famous constant z0. So e over v0 is actually
equal to Xi over z0 squared. And this is something just to keep in mind. If you know Xi, you
certainly must know z0, because that’s not in your potential, and then you know how much is
the energy. All very convenient things.
So punchline for solutions. So what do we have? We have two equations. This equation
maybe should be given a number. Xi equals 8 at tan Eta and Eta and Xi squared giving you z
squared. So how do we solve it? We solve it graphically. We have Psi, Eta, and then we say,
oh, let’s try to plot the two equations. Well this is a circle. Eta squared plus Psi squared. Now Xi
and Eta must be positive, so we look at solutions just in this quadrant. Let’s put here pi over 2.
Pi 3 pi over 2, 2 pi, and here is Eta and there is Xi.
Well this is a circle, as we said, but let’s look at this. Xi equals Eta tan Eta. That vanished as
Eta goes to 0 and will diverge at Eta equals pi over 2. So this part, at least, looks like this. And
then it will go negative, which don’t care, from this region, and then reach here at pi. And after
pi, it will go positive again and it will reach another infinity here. And then at 3 pi, at 2 pi, it will
go again and reach not another infinity like that.
So these are these curves. And the other curve, the circle, is just a circle here. So, for
example, I could have a circle like this. So the radius of this circle is radius z0. And there you
go, you’ve solved the problem. At least intuitively you know the answer. And there’s a lot of
things that come out of this calculation. If the radius z0 is 3 pi over 2, for example, and the
radius z0 represents some potential of some depth and width, there will be just two solutions.
These are these solutions. These points represent values of Xi and values of Eta, from which
you could read the energy. In fact, you can look at that state and say, that’s the state of largest
Xi, and therefore it’s the state of the largest absolute value of the energy. It’s the most deeply
bound state. Then this is next deeply bound state. So there’s two bounce states in this case.
Interestingly, however shallow this potential might be, however small, z0, the circle, will always
have one intersection, so there will always be at least one solution.
That’s the end of that story. Let me say that for the odd case, odd solutions, I will not solve it.
It’s a good thing to do in recitation or as part of the home work as well. The answer for the odd
case is that Psi is equal to minus Eta [? Cot ?] Eta. And in that case, I’ll give you a little preview
of how the this [? Cot ?] looks. It looks like this. And then there are more branches of this
thing. So for the odd solution, you have these curves. And if you have a circle, sometimes you
don’t have a solution. It doesn’t intersect this.
So these odd solutions, you will see and try to understand, they don’t always exist. You meet a
potential that is sufficiently deep to get an odd solution. And then the odds and even solutions
will interweave each other and there will be a nice story that you will explore in a lot of detail.
But the is, you’ve reviewed the problem to unit free calculation, in which you can get the
intuition of when solutions exist and and when they don’t. But solving for the particular
numbers are transcendental equations, and you need a computer to solve.

  • 10
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值