Lecture 17: Ramsauer-Townsend effect. Scattering in 1D.

L17.1 Waves on the finite square well (15:44)

L17.2 Resonant transmission (17:49)

L17.3 Ramsauer-Townsend phenomenology (10:16)

L17.4 Scattering in 1D. Incoming and outgoing waves (18:05)

L17.5 Scattered wave and phase shift (08:40)

L17.1 Waves on the finite square well (15:44)

MITOCW | watch?v=EdRkQmmq7vk
PROFESSOR: Today’s lecture continues the thing we’re doing with scattering states. We send in a scattering
state. That is an energy eigenstate that cannot be normalized into a step barrier.
And we looked at what could happen. And we saw all kinds of interesting things happening.
There was reflection and transmission when the energy was higher than the barrier. And there
was just reflection and a little exponential decay in the forbidden region if the energy was lower
than the energy of the barrier.
We also observed when we did the packet analysis that a wave packet sent in would have a
delay in coming back out. It doesn’t come out immediately. And that’s the property of those
complex numbers that entered into the reflection coefficient. Those complex numbers were a
phase that had an energy dependence. And by the time you’re done with analyzing how the
wave packet is moving, there was a delay.
So today we’re going to see another effect that is sometimes called resonant transmission.
And it’s a rather famous. Led to the so-called Ramsauer-Townsend effect. So we’ll discuss
that. And then turn for the last half an hour into the setup where we can analyze more general
scattering problems.
So let’s begin with this Ramsauer-Townsend effect. And Ramsauer Townsend effect. Before
discussing phenomenologically what was involved in this effect, let’s do the mathematical and
physics analysis of a [INAUDIBLE] problem relevant to this effect.
And for that [INAUDIBLE] problem we have the finite square well. We’ve normalized this
square well. Having width to a. So it extends from minus a to a. That’s x equals 0.
And there’s a number minus v0. v0 we always define it to be positive. Therefore, v0 is the
depth of this potential.
And the question, is what happens if you send in a wave? So you’re sending in a particle. And
you want to know what will happen to it.
Will it get reflected? Will it get transmitted? What probabilities for reflection, what probabilities
for transmission?
So of course, we would have to send a wave packet to represent the physical particle. But
we’ve learned that dealing with energy eigenstates teaches us the most important part of the
story. If a particle has some energy, well roughly, it will tend to behave the way an energy
eigenstate of that energy does, as far as reflection and as far as transmission is concerned.
So we’ll set up a wave. And there’s a coefficient A. So there’s an Ae to the ikx. That is our
wave. And it’s moving to the right. Because you remember the time factor, e to the minus iet
over h bar. And when you put them together, you see that it’s moving to the right.
But presumably, there will be a reflection here. The wave comes in, and some gets reflected
and some gets transmitted. And the part that gets transmitted probably will get partially
reflected back here and partially transmitted forward.
But the part that is partially reflected will get again reflected here and partially transmitted
back. It seems like a never ending process of which, if you think physically what’s happening,
there’s a reflection at the first barrier.
Now you say, wait a moment. Why would there be a reflection? Classically, there would never
be a reflection. If the potential goes down, the particle would just be able to continue. We had
reflection when we had a barrier.
Well in quantum mechanics, any change in the potential is bound to produce a reflection. So
yes, if you have a potential like this, like a jumping board, and you come in here, there’s a tiny
probability that you will be reflected as you come into this potential drop.
So OK, so this will be reflection. So at the end of the day, there might be many bouncings. If
you imagine a particle doing this. Some probability of reflection, some of transmission.
But the end of the day, there will be some wave moving to the left here. So we’ll represent it by
Be to the minus ikx. So in this region, we have A and a wave with amplitude B going this way.
In the middle region, the same will be true. There will be some wave going here, and some
wave that bounces due to this reflection. So there will be a-- I don’t know what letters I used.
I’d better keep the same. C in this direction and D in this direction.
And now I would have Ce to the ikx. Well, that e to the ikx is not quite right. Because k here, k
squared represents the energy. k is the momentum and k squared is energy.
So if you have an energy eigenstate-- oh, my picture is very crowded. So I’ll do it anyway. A is
here. Maybe I’ll put C and D here. And now with A and B here I can write this as the energy.
You have a particle with some energy coming in. And there is this wave here and k squared.
It’s 2mE over h squared. E is positive scattering states. And indeed, E from that equation is h
squared k squared over 2m. What do you know?
But at this point, the total energy, kinetic energy of the particle is bigger. If e is replaced by e
plus v0, which is the magnitude of this drop. So here there will be a k2x plus De to the minus
ik2x. And k2 refers because it’s region two, presumably. People use that name. k2 squared will
be 2me plus v0 over h squared.
And finally, to the right of the potential square well there will be just one wave. Because
intuitively, we should be able to interpret this as some wave that goes through, but has nothing
to make it bounce or reflect.
So we try to get the solution, which will have just some wave going in this direction. And it’s
called Fe to the ikx. And I can go back to the label k because you have the same energy
available as kinetic energy you had to the left of the barrier.
OK, so we’ve set up the problem. The wave function I would have to write it as three
expressions. One for x less than a, one for x in between a and minus a, and one for x greater
than a. And those are this one, two, and three formulas.
Any questions about this setup so far?
OK. Well, at this moment you will eventually have some practice on that. The thing that you
want to do is relate the various coefficients and define some reflection and transmission
coefficients. We saw we had to think in terms of probability current. That’s the better way to
get an idea of what you should call reflection or transmission coefficient.
So we have to be careful with the case of the step potential when we compared the meaning
of the wave that was moving to the right. The amplitude divided by the incoming wave was not
quite the transmission coefficient. But in this case, the nice thing is that the wave to the left and
the wave to the right are experiencing the same potential. So they can be compared directly.
So I will be able to conjecture, it’s reasonable to conjecture that we can define reflection and
transmission coefficients as follows. We’ll have a reflection coefficient should be B over A
squared. B represents a reflected wave, A the incoming wave.
The transmission coefficient you may guess that it’s F over A squared. And this all will make
sense if we have the reflection plus the transmission is equal to 1.
So we have current conservation, conservation. And the current, which is the net probability
flow to the left of the barrier or the depression over here, is J on the left is proportional to A
squared minus B squared.
You remember, we computed it last time. If you compute the probability current to this Ae to
the ikx plus Be to the minus ikx, you get two contributions. Essentially A squared minus B
squared. There’s a factor of h bar k over m in front.
At any rate, this should be equal to the current that is flowing out in this direction. You see,
whatever current is coming in to the left must be the current going out to the right. So this is f
squared.
So current conservation really tells you that A squared minus B squared is equal to F squared.
And if you pass the B to the other side, you get A squared equal B squared plus F squared.
And dividing by A squared you get 1 is equal to B over A squared plus F over A squared. And
that’s the reflection plus the transmission
So the way we’ve defined things makes sense. Reflection and transmission are properly
defined. And this is because current conservation works well.
So reflection coefficient is essentially the flux in the reflected, the probability current or in the
flux in the reflected wave compared to the flux in the incoming wave. The transmission is the
probability current or flux of probability in the transmitted wave compared with the one
incoming wave.
So you’ve done all of this set up. Now you can’t avoid, however, doing a little bit of calculation,
which is boundary conditions. You have one, two, three, four, five variables. And somehow,
you want to calculate these ratios.
So you have to say that the wave function and the derivative is continuous at this point. And
the wave function and the derivative is continuous and this point. That would give you four
conditions.
And that’s reasonable. We have five variables. But you know, the overall normalization could
never be determined.
never be determined.
So things can be determined in terms of A. So you can expect that with four equations you can
solve for B, C, D, and F in terms of A. But the overall scale of this total wave function is
undetermined. Its boundary conditions will give you constraints, but it will never determine the
magnitude, the overall magnitude of an energy eigenstate.

L17.2 Resonant transmission (17:49)

MITOCW | watch?v=KkSr0SvXfNY
PROFESSOR: Here is the answer, answer. It’s easier apparently to write 1 over T. And 1 over T is equal to 1
plus 1 over 4 V0 squared over E times E plus V0 times sine squared of 2k2a.
So the one thing to notice in this formula, it’s a little complicated, is that the second term is
positive. Because V0 squared is positive, the energy is positive, and sine squared is positive.
So if this is positive, the right-hand side is greater than 1. And therefore, the T is less than 1.
So this implies T less than or equal to 1.
And there seems to be a possibility of T being equal to 1 exactly if the sine squared of this
quantity, or the sine of this quantity, vanishes. So there is a possibility of very interesting
saturation, in which the transmission is really equal to 1. So we’ll see it.
The other thing you can notice is that, as E goes to 0, this is infinite. And therefore, T is going
to 0. No transmission as the energy goes to 0.
As the energy goes to infinity, well, this term goes to 0. And you get transmission, T equals to
one. So these are interesting limits.
Now, to appreciate this better, we can write it with unit-free language. So for that, I’ll do the
following. It’s a little rewriting, but it helps a bit.
So think of 2k2 times a, this factor, as the argument of the sine function. Well, it’s 2. k2 was
defined up there, so it’s 2m a squared E plus V0 over h squared. And I put the a inside the
square root.
So what do we have here? 2 times the square root of 2m a squared. Let’s factor a V0, so that
you have 1 plus E over V0. And you have h squared here.
So this is OK. There’s clearly two things you can do. First, define a unit-free energy. So the
energy is now described by this little E. Without units, that compares the energy of your energy
eigenstate to the depth of the potential.
So it should be over V0. So this is nice. You don’t have to talk about EVs or some quantity.
Just a pure number.
And here, there is another number that is famous. This is the number Z0 squared of a
potential well. This is the unit-free number that tells you how deep or profound is your
potential, and controls the number of zeros.
So at this moment, this is simply 2 Z0, because the square root is there and takes the Z0
squared out as Z0. Square root of 1 plus e, which is nice. So here, you can divide by V0
squared, numerator and denominator. So you have an E over V0, and a 1 plus an E over V0.
So the end result is that 1 over T is now 1 plus 1 over 4e 1 plus e sine squared of 2 Z0 square
root of 1 plus e.
So it’s ready for numerical calculation, for plotting, and doing all kinds of things with it. But what
we want to understand is this phenomenon that you would expect, in general, some reflection
and some transmission. But there is a possibility when T is equal to 1, and in particular, when
this sine squared function is equal to 0, and that will make T equal to 1, then you have a
perfect transmission. So let’s see why it is happening, or under what circumstances it
happens.
So for what the energies will we have? For what energies? Energies is T equal to 1. It’s perfect
transmission. No reflection whatsoever. So we need, then, that the argument of this sine
function be equal to multiples of pi, 2 Z0 square root of 1 plus e is equal to a multiple of pi.
Now, we would say what the multiple of pi? Well, it could be 0, 1, 2, 3. Not obvious, because
the only thing you have here to adjust is the energy. The energy is positive. And that’s that
little e in here.
So this number n must exceed some number, because this left-hand side never becomes very
small. The smallest it can be is 2 Z0. So n must be greater than or equal to 2 Z0 over pi. This
is because e, since e is greater than 0.
So the left hand side is a number that is greater than 2 Z0, and the right-hand side must
therefore be that way. All right, so this is a possibility. But then, let’s calculate those values of
the energies. Calculate those en’s.
So what do we have? We squared the left hand side for Z0 squared times and 1 plus en is
equal to pi squared n squared. And en is equal to minus 1 plus n squared pi squared over 4
Z0 squared.
OK, this is quantitatively nice. But probably still doesn’t give us much intuition about what’s
going on. So let me go back to the total energy. en, remember, was energy divided by V0.
So multiply all terms by V0. E equals minus V0 plus n squared pi squared V0 over 4. Z0
squared, I’m going to go all the way back to conventional language. And, too, 4 times Z0
squared, which is 2ma squared V0 over h bar squared.
So E is minus V0 plus n squared pi squared. The V0s cancel. h squared over 2n times 2a
squared. I think I got every term right.
So what does this say? Well, think of the potential. In this region, there’s an e here. And
there’s minus V0 there.
So it says E is minus V0 plus this quantity. So minus V0 plus this quantity, which is n squared
pi squared h squared over 2m times 2a squared. So the resonance happens if the energy is a
distance above the bottom of the potential, which is equal to this quantity.
And now, you see something that we could have seen maybe some other way. That what’s
happening here is a little strange at first sight. These are the energy levels of an infinite square
well of width, 2a. If you remember, the energy levels of an infinite square well are n squared pi
squared h squared over 2m times the width squared. And those are exactly it.
So the energies at which you find the transmission, and the name is going to become obvious
in a second, it’s called the resonant transition, are those in which the energy coincides with
some hypothetical energy of the infinite square well that you would put here. If it is as if you
would have put an infinite square well in the middle and look at where are the energies of
bound states that are bigger than 0, that might be bouncing the energies here, but those are
not relevant, because you only consider energies positive.
So if you find an energy that is positive, that corresponds to a would-be of infinite square well,
that’s it. That’s an energy for which you will have transmission. And in fact, if we think about
this from the viewpoint of the wave function, this factor over here, look at this property over
here.
So what do we have? The condition was that k2 time 2a, the argument of the sine function
would be a multiple of pi. But k2 is 2 pi over the wavelength of the wave that you have in this
range, over 2a. It’s equal to n pi. So we can cancel the pis and the 2s so that you get 2a over
lambda is equal to n over 2.
And what does that say? It says that the de Broglie wavelength that you have in this region is
such that it fits into 2a. Let me write it yet in another way. Let me try this a as-- I won’t write it
like that. Leave it like that.
The wavelength lambda fits into 2a a half-integer number of times. And that’s exactly what you
have in an infinite square well. If you have a width, well, you could have half a wavelength
there for n equals 1, a full thing for n equals 2, 3 halves for n equals 3. You always get half
and halves and halves increasing and increasing all the time. Yeah.
So the way I think I wanted to do it, this equation can be written as n is equal to 2a over
lambda over 2. That’s the same equation. So in this way, you see an integer a number of
times is 2a divided by lambda over 2, which is precisely the condition for infinite square well
energy eigenstate. So there is no infinite square well anywhere in this problem.
But somehow, when the wavelength of the de Broglie representation of the particle in this
region is an exact number of half-waves, there’s resonance. And this resonance is such that it
allows a wave to go completely through. It’s a pretty remarkable phenomenon.
So the infinite square well appears just as a way to think of what are the energies at which you
will observe the resonances. But the resonance is simply due to having an exact number of
half-waves in this region. So we can do on a little numerical example to show how that works.

L17.3 Ramsauer-Townsend phenomenology (10:16)

MITOCW | watch?v=5u-9lFhCl5w
PROFESSOR: If you have potential transmission coefficient for a potential where z0 is equal to 13 pi over 4. That’s
a square well of certain depth, and we represent it in this way. Remember n must be greater than or equal than
2z0 over pi. So this will be 13/2. And 13/2 means that we can start with n equals 7, 8, 9, and all those.
Remember, this n counts which bound state of the infinite square well you’re talking about. And the energy that
you must use are your integers, are positive energy. So positive energies mean that you have sufficiently large n,
and the n that this sufficiently large is 7 in this case.
So you can then determine from this formula what is the value of e n over v0. So for example E7 over v0 turns out
to be 0.15976. E8 over v0 turns out to be 0.514793. And E9 over v0 is 0.91716.
So if you plot it, you have here E, or capital energy, over v0. And you want to plug the transmission probability.
And it begins with 0. That was the question a second ago. And then it may reach 1. And it will reach 1 at each one
of those values. So if, here is 1, 0.15. There will be 0.15, 0.51, and 0.92. So you get this, and here another one,
and here another one. Probability like that.
So that’s a typical graph for the transmission probability. It oscillates, and it reaches 1 at several points forever
and ever. And the amplitude become smaller, so it’s really overall tending to 1.
So these two people we’re talking about, Ramsauer and Townsend. They lived from 1860s to 1940s and '50s.
And they did their famous experiment in 1921. So their experiment was elastic scattering of low energy electrons
off of rare gas atoms. So Ramsauer and Townsend, in 1921, they scattered elastically. That means the particles
didn’t change their identities. They didn’t create more particles. It was just electrons came in and electrons went
out. Electrons. And these are low energy electrons, off of rare gas atoms.
So these are noble gases. Their shells are completely filled. And they’re rather inert, very unreactive, high
ionization energies, no low energy states you can scatter these atoms into. So basically very unreactive atom.
And you can imagine it as a very beautiful spherical cloud. We can draw some electrons, there’s some protons, a
nucleus here, and an electron cloud. So how does this look to an electron? Well, you know from electrostatics that
if you have total charge 0 and it’s totally spherically symmetric, no electric field outside. So the electron comes in,
feels nothing. And as soon as you penetrate this, at any point here, the electric field points in. Or, well, it actually
points out, but the electron will feel a force in. Because the charge in the outside shell doesn’t produce any field.
But now, the protons in the nucleus beat the effect of the electrons.
So there’s a force in, a force in, that goes in. So basically this is like a deep square well, or spherical well,
representing the atom. The atom can be some sort of spherical well that attracts the electrons.
So what these people did were throwing these electrons. And they considered that this electron scattered a lot
when they bounced back. On the other hand, if they continued, if the electrons pass by, they said nothing has
happened. So the reflection coefficient for them, the reflection coefficient. Reflection coefficient is a proxy, a good
representation for the scattering cross-section.
So the reflection coefficient, what they found experimentally was a reflection coefficient, R, that as a function of
energy was very high. And people thought at this moment, OK, these are like particles colliding with particles.
Their energies shouldn’t make much difference, you know. You either collide or you don’t collide, and you bounce
back or you don’t bounce back.
So they thought that this would be flat. But nevertheless, it actually went down enormously, and then it went up
again. So they found that for electrons with about 1 Ev, that’s very low energy electrons, but they were going
pretty fast. And E1, Ev electron is going like at 600 kilometers per second.
So the reflection was going like this. And they had no explanation why it was so sensitive with energy, and why
there would be a funny effect going on, that the reflection would suddenly go down, and just basically the particles
would get transmitted. But if you think of reflection here as a continuous line and transmission as a dotted line, the
transmission that must alter the reflection to be 1 would be going up here and would have reached near 1 at this
value of the energy.
So the explanation eventually was this effect, that you should do well and there is a resonant effect in the well, and
for some energies the resonance is such that it allows the particles to just go through and not scatter.
So this had to wait some time, because the experiment was done in 1921, and Schrodinger and everybody started
doing good work in 1925, and of wave mechanics took a while. But eventually it was recognized that basically it’s
resonant transmission, what is happening there.
Well, if you want to get the numbers right, if you want to get that Ev better, you have to do a spherical model of the
square, finite square well, you have this spherical well, and do it a little more precisely. But then the agreement is
pretty reasonable.

L17.4 Scattering in 1D. Incoming and outgoing waves (18:05)

MITOCW | watch?v=twdF0EIbFds
BARTON
ZWIEBACH:
Scattering in dimension. And we will consider a world that is just one dimensional, x. And, in
fact, there’s an infinite barrier at x equals 0. Infinite barrier, nothing goes beyond there. On the
other hand, in here, up to some distance R, there could be a potential V of x. So we will have a
potential V of x, it will have the following properties-- it will be identically 0 for x greater than R,
which is the range of the potential; it will be some function V of x for x in between R and 0; and
it will be infinity for x less than or equal than 0.
This is your potential, it’s a potential of range R-- range of the potential. And the experiment
that we think about is somebody at x equal plus infinity throwing waves into this potential. And
this observer can only get back a reflected wave, and from that reflected wave, the observer
wants to deduce the type of the potential that you have there.
And that’s absolutely the way physics goes in particle physics. In LHC, you throw protons or
electrons together and you just catch what flies out of the collision with all the detectors and
read that they then deduce what happened to the collision, what potential was there, what
forces were there, was there a new particle? It’s all found by looking at what comes out and
flies away. So there’s enormous amount of information on the potential from the data that
comes out of you throwing in some particles in and waiting to see what comes back to you.
So we will always have this infinite wall. And this infinite wall at x equals 0 means that x less
than 0 is never relevant. And this is analogous to R, the variable R in radial coordinates for
which the radial distance is never negative. So in fact, what we’ll do here has immediate
applications when we will consider-- not in this course-- scattering in three dimensions.
So to begin this, we’ll solve the simplest case where you have no potential whatsoever. Now
no potential means still the barrier at x equals 0, the infinite barrier, but in between 0 and R,
nothing is happening. So you have just a case of no potential. Is the case where you have the
barrier here and x is over there and up to R, nothing’s happening, it’s just the wall. That’s all
there is, just one wall. So this is V-- no potential is V is equal to V of x is equal 0 for x greater
than 0. And it’s infinity for x less or equals than 0.
So in this case, let’s assume we have an incident wave. An incident wave must be propagating
in this way, so an incident wave is an e to the minus ikx. And if you have an outgoing wave, it
would be some sort of e to the ikx. These are the only things that can be there. They
correspond to energy eigenstates, this is the de Broglie wave function of a particle with
momentum, in one direction or in the other direction.
But let’s combine them in a way to produce a simple solution. So this solution, phi of x, will be
the solution. Will be a combination that’s similar-- e to the ikx and e to the minus ikx, and I
should make the wave function vanish at x equals 0. At x equals 0, both exponentials are
equal to 1, so if I want them to cancel, I should put a minus.
So in order to simplify this the best possible way, we can put a 1 over to 2i’s over there so that
we have a sine function, and the sine function is particularly nice. So we’ll have e to the–
output like this-- e to the minus ikx plus e to the ikx over 2i, and this is just the sine function
side of kx, which you would admit, it’s a V solution over here, a sine of kx. On the other hand, I
can think of this solution as having an incoming wave, which is minus e to the minus ikx over
2i, and an outgoing wave of e to the ikx over 2i.
So this is the representation of the solution when nothing is happening, and the good thing
about this solution is that it tells us what we should write-- gives us an idea of what we should
write when something really is happening. So now let’s consider how we would write the
general experiment in which you send in a wave but this time, there is really a potential.
So let’s consider now, if no potential was there and now yes, potential-- so no potential here,
so what does it mean yes potential? Well, it means you have this and you have some potential
there up to some distance R, and then it flattens out, and something happens. So in order to
compare, we’ll take an incoming wave, the same as the one where there was no potential. So
let’s take an incoming wave, which is of the form e to the minus ikx times minus over 2i. But I
must say here, I must write something more-- I must say that x is greater than R, otherwise
this is not the solution.
You see, in the region where the potential really exists, where the-- goes up and down, you
don’t know the solution. It would take solving the Schrodinger equation. You know the solution
where the potential is 0, so yes, this incoming wave is the solution of the Schrodinger equation
in this potential when x is greater than R.
And how about the outgoing wave? Well, we would like to write it like that. So we’ll say 1 over
2i e to the ikx is also an outgoing wave, and we have no hope of solving it here, finding what’s
happening here unless we solve a complicated equation, but then let’s look outside-- we’re still
looking outside. But that cannot be the outgoing wave. This is the same as the other one and
there is a potential, so something must be different. On the other hand, if you think about it,
very little can be different because you must have a solution with 0 potential and-- you know
these plane waves going out are the only things that exist.
And now you decide, oh, if that’s the case, I cannot put another function of x in there because
that’s not a solution. The best I can do is multiply by a number, because maybe there’s very
little outgoing wave or there is not, but then I think of another thing-- remember if you had e to
the A, e to the minus ikx plus B e to the ikx, well, the probability current was proportional to A
squared minus B squared.
And this time, however, you have-- you’re sending in a wave and you’re getting back a wave
and this is a stationary state-- we’re trying to get energy eigenstate, solutions of some energy
just like this energy. And the only way it can happen is if they carry the same amount of
probability-- probability cannot be accumulating here, nor it can be depleted there as well, so
the currents associated to the two waves must be the same. And the currents are proportional
to those numbers that multiply these things squared, so in fact, A squared must be equal to B
squared, and therefore we cannot have like a 1/3 here, it would just ruin everything.
So the only thing I can have is a phase. It’s only thing-- cannot depend on x, because that was
an unsolved equation. Cannot be a number that is less than 1 or bigger than 1. The only thing
we can put here is a phase.
So we’ll put an e to the 2i delta. And this delta will depend on k or will depend on the energy,
and it will depend on what your potential is, but all the information of this thing is in this delta
that depends on k. And you say, well, that’s very little, you just have one phase, one number
that you could calculate and see, but remember, if you have a delta of k, you could measure it
for all values of k by sending particles of different energies and get now a whole function. And
with a whole function delta of k, you have some probability of getting important information
about the potential.
So we’ll have a phase there, e to the i delta of k. And let’s summarize here, it’s due to current
conservation-- the current of this wave and the current of the outgoing waves should be the
same. And also note that no extra x dependents is allowed. So this will produce the J incident
will be equal to J reflected.
Now you could say, OK, very good, so there’s delta, there’s a phase-- should I define it from 0
to 2 pi? From minus pi to pi? It’s kind of natural to define it from minus pi to pi, and you could
to 2 pi? From minus pi to pi? It’s kind of natural to define it from minus pi to pi, and you could
look at what it is, but as we will see from another theorem, Levinson’s theorem, it will be
convenient to just simply say, OK, you fixed the phase delta at k equals 0. At 0 energy
scattering, you read what is your delta-- unless you increase the energy, the phase will
change.
So if you have a phase, for example, on a circle, and the phase starts to grow and to grow and
to grow and to grow and to go here, well, should you call this pi and this minus pi? No. You
probably should just-- if it keeps growing with energy-- and it might happen, that the phase
keeps growing with energy-- well, pi, 2 pi, 3 pi, 4 pi, just keep the phase continuous. So
keeping the phase continuous is probably the best way to think about the phase. You start at
some value of the phase and then track it continuously. There is always a problem with
phases and angles, they can be pi or minus pi’s the same angle, but try for continuity in
defining the phase when we’ll face that problem.
So let’s write the solution. We have this, so the total solution. We call the solution with no
potential phi, this one we’ll call psi of x will be 1 over 2i, the first term-- e to the ikx plus 2i delta
minus e to the minus ikx. It’s convenient to pull out of i delta to make the two terms have
opposite arguments, so e to the ikx plus i delta, and-- or e to the ikx plus delta parenthesis
minus e to the minus ikx plus delta. So this is e to the i delta times sine of kx plus delta.
So that’s this full scattered wave, not the full reflected-- well, that word again. This is the full
wave that you have for x greater than R. So let’s write it here-- psi of x. It’s not the reflected
wave nor that it covers everything. We include-- it’s for x greater than R, but we include the
incoming and outgoing things, because both are defined for x greater than R, so the total
wave is this one. And you notice that if the phase shift is 0, you are nicely back to the wave
function phi that we found before.

L17.5 Scattered wave and phase shift (08:40)

MITOCW | watch?v=w49WAat6ymk
PROFESSOR: Let’s look at the magnitude squared of those waves that we’ve already defined here. We have
two solutions, one for no potential and one for a real potential. Both are for some finite range
potential.
We have phi of x squared is equal to sine squared of kx. And psi of x squared is equal to sine
squared of kx plus delta. Even from this information you can get something.
Think of x plotted here. Here’s x equals 0. And there’s this sine squared. This wave for phi of x
squared.
Suppose you’re looking at some feature-- a maximum, a minimum-- of this function. Suppose
the feature happens when the argument, kx, is equal to some number, a0. Whatever feature–
this number a0 could be 0, in which case you’re looking at a minimum, it could be pi over 2, in
which case you’re looking at a maximum-- some feature of sine squared.
Well the same feature will appear in this case when the whole argument is equal to a0. So
while this one happens at x equals a0 over k, here it happens at x still equals a0 over k minus
delta over k. If this is the probability density associated to the solution for no potential and it
has a maximum here, the maximum of the true solution-- say, here-- would appear at a
distance equal to delta over k. Earlier-- so this is like the x, and this is like the x tilde-- that
feature would appear, delta over k in that direction.
So this is psi. This is psi squared. So we conclude, for example, that when delta is greater than
0, the wave is pulled. Delta equals 0, the two shapes are on top of each other. For delta
different from 0, the wave function is pulled in. So delta greater than 0, psi is pulled in.
What could we think of this? The potential is attractive. It’s pulling in the wave function.
Attractive.
Delta less than 0, the wave is pushed out. It would be in the other direction, and the psi is
pushed out. Potential is repulsive. So a little bit of information even from the signs of this thing.
We want to define one last thing, and then we’ll stop. It’s the concept of the scattered wave.
What should we call the scattered wave? We will define the scattered wave psi s as the extra
piece in the solution-- the psi solution-- that would vanish without potential.
So we say, you have a psi, but if you didn’t have a potential, what part of this psi would
survive? Think of writing the psi of x as the solution without the potential plus the extra part,
the scattered wave, psi x. So this is the definition.
The full scattering solution, the full solution when you have a potential, can be written in a
solution without the potential and this scattered thing. Now, you may remember-- we just did it
a second ago-- that this original solution and the psi solution have the same incoming wave.
The incoming wave up there is the same for the psi solution as for this one.
So the incoming waves are the same. So only the outgoing waves are different. And this
represents how much more of an outgoing wave you get than from what you would have
gotten with psi. So this must be an outgoing wave.
We’ll just plug in the formula here. psi s is equal to psi minus phi. And it’s equal to 1 over 2i e
to the ikx plus 2i delta minus e to the minus ikx minus 1 over 2i-- the phi-- into the ikx minus e
to the minus ikx. So the incoming waves wee the same. Indeed, they cancelled. But the
outgoing waves are not. You can factor an e to the ikx, and you get e to the 2i delta minus 1.
Which is equal to e to the ikx e to the i delta times sine delta.
There we go. We have the answer for the scattered wave. It’s proportional to sine delta, which,
again, makes sense. If delta is equal to 0, there is no scattering. It’s an outgoing wave and all
is good. So I’ll write it like this. psi s is equal to As e to the ikx, with As equal to e to the i delta
sine delta.

  • 16
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值