一文搞懂光纤的方方面面

光纤

一直以为光纤模块会非常贵,呃,只能说没有想象中的贵,相比网线还是贵上不少
一个常见的光纤系统通常会包括收发器,光电转换器还有光纤收发器, 通常简单的入门级一套下来可能也在200~300左右,并不算太高。

「话说嵌入式」一文搞懂光纤的方方面面

 

光纤的连接

想要把光纤网络组合起来并不是一件简单的事情,这其中涉及了许多种类的线材,复杂的协议及各式各样的接口,对网络组网还需要有一定的了解。我们还是先从单模多模开始讲起。

单模与多模

说起多模大数不熟悉光纤的人第一印象一定会觉得多模肯定比单模好啊?支持的模式不是更多?错,恰恰相反,在光纤里,反而是单模的价格更高,虽然在光纤制作的成本上单模和双模并没有什么太大的区别,但是在收发器上,单模的会比双模的更贵上一些。

模式是光纤第一个重要的概念
简单说(也只能简单说)一个模式是光在光纤中由于光的相干性引起的一种可能的能量分布状态。

单模光纤:一种只传播一种波长的光纤,纤芯内层直径通常为9微米,人的头发丝就差不多有100微米。纤芯还会由包层再包裹起来,包层起来反射光线光线的作用。加上包层的厚度,光路通常就会达到125微米,也就比头发丝大一点。

多模光纤: 多模的纤芯通常会达到50微米或以上(通常为62.5微米)。更大的纤芯意味着可以让更多的光能够在纤芯里同时传播。就像单模一样,纤芯也会被一层包层包裹起来,让光路直径达到125微米。

单模和多模最重要的区别就是在纤芯的粗细。更粗的纤芯意味更容易装光源的光直接射入到纤芯当中,这样就极大地降低了对光源的要求(比如可以LED,而非激光)和入射光的角度及位置的要求,但是由于纤芯较粗所产生的空间相干性,会带来更多传输时的损耗,所以较单模光纤而言,传输的距离更短。传输的带宽也会变得更小。

那么我们怎么区分光纤是单模的还是多模的呢?你不会想用肉眼直接看9微米和50微米的区别吧?那基本是不可能的,要分辨其实也很简单,看线的颜色就对了!

通常,对于单模光纤跳线而言它的颜色为黄色,

「话说嵌入式」一文搞懂光纤的方方面面

 

多模跳线相对而言种类更多,一般分为以下5个等级,每个等级会有自己不同的颜色

「话说嵌入式」一文搞懂光纤的方方面面

 

OM1 橙色
OM2 橙色
OM3 湖水蓝
OM4 湖水蓝或紫色
OM5 水绿色

「话说嵌入式」一文搞懂光纤的方方面面

 

等级越高 其可以传输的距离就更远 带宽就更大,当然,价格也会更贵。一般情况下使用OM3的线就可以了。

说完了光纤自身的特性,接下来是不是就可以说光电转换器了呢?不,还不行,想一想光纤是如何在光电转换器上插拔的呢?对,就是靠各式各样的光纤接口

光纤接头

一张图简明地了解一下程式插头的样子

「话说嵌入式」一文搞懂光纤的方方面面

 

其中
LC 材质为塑料,用于连接SFP模块,大有替代SC接头的趋势
ST 材质为金属,插入后旋转固定,牢固,但光纤易断
SC 材质为塑料,矩形结构,插拔方便
FC 材质为金属,并带有螺纹,牢固,防灰尘就是安装麻烦

由于新老接口不同,网上便出现了很多种不同接口之间的转接头

「话说嵌入式」一文搞懂光纤的方方面面

 

说完光纤接头,你以为这就完了吗?不不不,用来接光纤的座子还可以继续细分!
这就是我们接下来要说的光模块了。

光模块

通常SC接头对应的是GBIC光模块,LC接头连接的是SFP光模块。两者都是千兆网络的光模块及接头,区别在于体积大小不同。

「话说嵌入式」一文搞懂光纤的方方面面

 

SFF
SFF是Small Form. Factor的简称,英特尔将其称为小封装技术。SFF光模块是最早期光模块产品,

GBIC
GBIC是Gigabit Interface Converter的缩写,即千兆接口转换器,是将千兆位电信号转换为光信号的接口器件。GBIC个头比较大,差不多是SFP体积的两倍,是通过插针焊接在PCB板上使用。目前基本上被SFP取代。SFP模块在功能上与GBIC基本一致,也被有些交换机厂商称为小型化GBIC(Mini-GBIC)。

SFP
SFP 是Small Form-factor Pluggables的简称,即小封装可插拔光模块。SFP可以理解为GBIC的升级版,它的体积只有GBIC模块的1/2,极大增加了网络设备的端口密度。此外,SFP的数据传输速率从100Mbps到4Gbps不等。

SFP+
SFP+是SFP的加强版,支持8Gbit/s光纤通道、10G以太网和光传输网络标准OTU2。此外,SFP+直连线缆(即SFP+ DAC高速线缆和AOC有源光缆)可在不添加额外光模块和线缆(网线或光纤跳线)的情况下连接两个SFP+端口,这对于两个相邻短距离的网络交换机直连而言是个不错的选择。

SFP28
SFP28是SFP+的加强版,和SFP+具有相同的尺寸,但其能支持单通道25Gb/s的速率。SFP28为10G-25G-100G网络升级提供了一种高效的解决方案,可满足下一代数据中心网络持续增长的需求。

QSFP+
QSFP+是QSFP的升级版本。QSFP能同时支持4通道传输,每条通道数据速率为1Gbit/s,但QSFP+与QSFP不同,它支持4×10Gbit/s通道传输,可通过4个通道实现40Gbps传输速率。与SFP+相比,QSFP+光模块的传输速率可达SFP+光模块的四倍,在部署40G网络时可直接使用QSFP+光模块,从而在有效节省成本的同时提高端口密度。

QSFP28
QSFP28为满足100G应用需求而生,共有4个高速差分信号通道,每路通道传输速率从25Gbps到可能的40Gbps不等,可满足100G以太网(4×25Gbps)与EDR InfiniBand的应用需求。QSFP28产品类型众多,实现100G传输的方式各有不同,如100G直连、100G转4路25G分支链路或100G转2路50G分支链路。
(这一段是直接摘抄,我感觉讲得相当的不错了)

能看到这里真的需要休息一会了, 不过你以为这就完了吗?不不不不,还有数字电路的信号!光模块输出的串行信号需要通过SerDes或SGMII传输到phy,这样才是把一个完整的光电转换过程完成了。

总结

虽说现在也基本普及光纤入门了,但是大家对光纤了了解还不是很多,希望这一篇入门级资料能对大家有所帮助~

参考

https://www.ppc-online.com/blog/fiber-connectors-whats-the-difference

http://www.usourcetech.com/zh_cn/optic/copper-sfp-sgmii-or-serdes.html


http://baike.labbang.com/index.php/多模光纤

https://www.zhihu.com/question/40683684

https://community.fs.com/cn/blog/om1-vs-om2-vs-om3-vs-om4-fiber-cables.html


https://community.fs.com/cn/blog/sfp-vs-sfp-vs-sfp28-vs-qsfp-vs-qsfp28-what-are-the-differences.html#:~:text=SFP+是SFP的加强,言是个不错的选择。

### 推荐算法概述 推荐系统旨在预测用户的兴趣并向用户提供个性化的建议。这类系统广泛应用于电子商务、社交媒体以及娱乐行业等领域,帮助用户发现感兴趣的商品或内容。为了构建有效的推荐引擎,通常采用三种主要类型的推荐技术:基于内容的过滤(Content-based Filtering),协同过滤(Collaborative Filtering),混合模型(Hybrid Models)[^4]。 #### 协同过滤原理 在众多推荐算法中,协同过滤是最常用的一种方法之一。其核心思想在于利用大量其他用户的行为数据来进行个性化推荐。具体来说,如果两个用户在过去表现出相似的兴趣偏好,则认为他们在未来也会有类似的喜好;同样地,对于同一类商品而言,被一群具有相同品味的人所喜爱意味着这些产品之间存在关联性[^4]。 ##### 用户-项目矩阵(U-V矩阵) 以视频平台为例,可以建立一个二维表格形式的关系结构——用户-视频矩阵(User-to-Item Matrix),其中每一行代表一位特定观众的历史观看记录,而每列则对应不同影片的信息。当面对稀疏的数据集时,可以通过填充缺失值或者仅保留评分较高的条目等方式简化处理过程。 ##### 计算相似度 针对上述提到的两种情况(即寻找相似用户和查找相近物品),需要定义合适的距离度量方式来量化彼此间的差异程度。常见的衡量标准包括余弦相似度(Cosine Similarity)、皮尔逊相关系数(Pearson Correlation Coefficient)等。例如,在计算两部电影之间的相似度时,可以选择后者作为评价指标: \[ \text{similarity}(A, B)=\frac{\sum_{i=1}^{n}\left(r_{Ai}-\bar{r}_{A}\right)\left(r_{Bi}-\bar{r}_{B}\right)}{\sqrt{\sum_{i=1}^{n}\left(r_{Ai}-\bar{r}_{A}\right)^{2}} \cdot \sqrt{\sum_{i=1}^{n}\left(r_{Bi}-\bar{r}_{B}\right)^{2}}} \] 这里 \( r_{Xj} \) 表示第 j 位用户给定 X 物品打下的分数,\( \overline {r_X } \) 则表示所有涉及此项目的平均得分。 ```python import numpy as np from scipy.spatial.distance import pdist, squareform def pearson_corr_matrix(data): """Calculate the Pearson correlation coefficient matrix.""" corr = 1 - squareform(pdist(data.T, metric='correlation')) return corr ``` #### 实现步骤 尽管具体的实施方案可能因应用场景的不同有所变化,但总体上遵循以下几个原则: - **数据预处理**:清洗并整理原始日志文件中的交互事件; - **特征提取**:根据业务需求选取恰当维度描述实体属性; - **模型训练**:运用机器学习框架完成参数估计工作; - **效果评估**:借助离线测试集验证性能表现,并持续迭代优化方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一口Linux

众筹植发

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值