本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!
1 引言:什么是Householder变换?
Householder变换(Householder transformation)又称为初等反射变换(Elementary reflection)或豪斯霍尔德变换,是线性代数中一种基本而强大的正交变换 🎯。这种变换以美国数学家Alston Scott Householder(1904-1993)的名字命名,尽管历史记录显示苏格兰数学家A.C. Aitken在1932年就已率先提出了这一概念。Householder在1958年强调了该变换在数值线性代数中的重要意义,从而使其成为矩阵计算和数值分析中不可或缺的工具。
从几何角度看,Householder变换描述了一种镜像反射操作——它可以将任意向量关于某个经过原点的超平面进行反射,这个超平面由其法向量确定。这种直观的几何解释与其简洁的代数表示相结合,使得Householder变换在矩阵分解、线性方程组求解和特征值计算等众多领域中有着广泛应用。
与Givens旋转相比,Householder变换具有一次变换可以零化多个矩阵元素的优点,这使得它在许多实际计算中更加高效。
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!
往期文章推荐:
- 20.截断奇异值分解(Truncated SVD)详解:原理、应用与Python实践
- 19.线性代数中的特征向量:矩阵的“DNA方向“
- 18.奇异值分解(SVD):数据科学的“瑞士军刀“
- 17.CLIP模型全解析:从对比学习到零样本识别的革命
- 16.XLM-R模型:大规模跨语言表示的突破与实践
- 15.GELU(高斯误差线性单元)激活函数全面解析
- 14.神经网络中的随机高斯初始化技术
- 13.Metropolis接受准则:随机模拟与优化中的关键基石
- 12.Rademacher复杂度:衡量机器学习模型复杂度的利器
- 11.对称树结构:原理、应用与Python实现
- 10.Huber损失函数:稳健回归的智慧之选
- 9.拟合优度:模型与数据的契合之度
- 8.Hoeffding树:数据流挖掘中的高效分类算法详解
- 7.独热编码:分类数据处理的基石技术
- 6.加权分位数直方图:提升机器学习效能的关键技术
- 5.Kolmogorov-Smirnov检验:从理论到实践的全解读
- 4.CSC格式:稀疏矩阵的列式压缩存储指南
- 3.机器学习特征筛选中的IV值详解:原理、应用与实现
- 2.群体稳定性指标PSI:机器学习模型稳定性评估的核心工具
- 1.Lift Chart分析:评估分类模型性能的实用工具
2 Householder变换的几何直观与数学定义
2.1 几何直观:镜子中的反射
Householder变换有一个非常直观的几何解释 🔍。在三维空间中,想象一个由法向量 u \mathbf{u} u确定的平面镜子。对于任意向量 x \mathbf{x} x,Householder变换将其映射为关于这个镜平面的镜像向量 y \mathbf{y} y。
更一般地,在n维空间中,给定一个单位向量 u \mathbf{u} u( ∣ u ∣ 2 = 1 \ | \mathbf{u}\ | _2 = 1 ∣u ∣2=1),Householder变换定义了关于以 u \mathbf{u} u为法向量的超平面的一种反射变换。这个超平面由所有满足 u ⊤ x = 0 \mathbf{u}^\top \mathbf{x} = 0 u⊤x=0的向量 x \mathbf{x} x组成,即所有与 u \mathbf{u} u正交的向量构成的子空间。
2.2 数学定义与矩阵表示
Householder变换的矩阵形式异常简洁而优美。给定非零向量 u \mathbf{u} u,对应的Householder矩阵定义为:
H = I − 2 u u ⊤ H = I - 2\mathbf{u}\mathbf{u}^\top H=I−2uu⊤
其中 I I I是单位矩阵。
当 u \mathbf{u} u是单位向量时(即 ∣ u ∣ 2 = 1 \ | \mathbf{u}\ | _2 = 1 ∣u ∣2=1),这个矩阵具有深刻的几何意义:它表示关于以 u \mathbf{u} u为法向量的超平面的反射。
如果需要将向量 x \mathbf{x} x反射为与特定向量 y \mathbf{y} y同方向,且保持长度不变(即 ∣ H x ∣ 2 = ∣ x ∣ 2 \ | H\mathbf{x}\ | _2 = \ | \mathbf{x}\ | _2 ∣Hx ∣2= ∣x ∣2),我们可以通过选择适当的 u \mathbf{u} u来实现。常用的构造方法是给定向量 x \mathbf{x} x,我们希望找到Householder变换使其映射到基向量 e 1 \mathbf{e}_1 e1的倍数:
u = x − α e 1 ∣ x − α e 1 ∣ 2 , α = ± ∣ x ∣ 2 \mathbf{u} = \frac{\mathbf{x} - \alpha\mathbf{e}_1}{\ | \mathbf{x} - \alpha\mathbf{e}_1\ | _2}, \quad \alpha = \pm\ | \mathbf{x}\ | _2 u= ∣x−αe1 ∣2x−αe1,α=± ∣x ∣2
这种选择可以确保 H x = α e 1 H\mathbf{x} = \alpha\mathbf{e}_1 Hx=αe1,即通过一次变换将向量 x \mathbf{x} x的所有非第一个分量零化。在实际数值计算中,通常选择 α = − sign ( x 1 ) ∣ x ∣ 2 \alpha = -\text{sign}(x_1)\ | \mathbf{x}\ | _2 α=−sign(x1) ∣x ∣2以避免数值不稳定。
3 Householder变换的数学性质
3.1 基本性质
Householder矩阵具有几个非常重要的数学性质,这些性质使得它在数值计算中特别有用:
- 对称性: H ⊤ = H H^\top = H H⊤=H
- 正交性: H ⊤ H = I H^\top H = I H⊤H=I,即 H − 1 = H ⊤ = H H^{-1} = H^\top = H H−1=H⊤=H
- 对合性: H 2 = I H^2 = I H2=I,即应用两次相同的Householder变换会回到原始向量
- 行列式: det ( H ) = − 1 \det(H) = -1 det(H)=−1
- 保范性: ∣ H x ∣ 2 = ∣ x ∣ 2 \ | H\mathbf{x}\ | _2 = \ | \mathbf{x}\ | _2 ∣Hx ∣2= ∣x ∣2,保持向量长度不变
这些性质中,正交性和保范性尤为重要,因为它们保证了Householder变换在数值计算中不会放大误差,从而具有良好的数值稳定性。
3.2 反射性质证明
Householder变换的反射性质可以从其定义直接推导。对于任意向量 x \mathbf{x} x,我们有:
H x = ( I − 2 u u ⊤ ) x = x − 2 u ( u ⊤ x ) H\mathbf{x} = (I - 2\mathbf{u}\mathbf{u}^\top)\mathbf{x} = \mathbf{x} - 2\mathbf{u}(\mathbf{u}^\top\mathbf{x}) Hx=(I−2uu⊤)x=x−2u(u⊤x)
注意到 u ⊤ x \mathbf{u}^\top\mathbf{x} u⊤x是一个标量,表示 x \mathbf{x} x在 u \mathbf{u} u方向上的投影长度。因此, x − 2 u ( u ⊤ x ) \mathbf{x} - 2\mathbf{u}(\mathbf{u}^\top\mathbf{x}) x−2u(u⊤x)恰好是 x \mathbf{x} x关于以 u \mathbf{u} u为法向量的超平面的镜像点。
特别地,对于与 u \mathbf{u} u平行的向量 x = c u \mathbf{x} = c\mathbf{u} x=cu,有:
H ( c u ) = c u − 2 u ( u ⊤ c u ) = c u − 2 c u = − c u H(c\mathbf{u}) = c\mathbf{u} - 2\mathbf{u}(\mathbf{u}^\top c\mathbf{u}) = c\mathbf{u} - 2c\mathbf{u} = -c\mathbf{u} H(cu)=cu−2u(u⊤cu)=cu−2cu=−cu
而对于与 u \mathbf{u} u正交的向量 x \mathbf{x} x(即 u ⊤ x = 0 \mathbf{u}^\top\mathbf{x} = 0 u⊤x=0),则有:
H x = x − 2 u ( 0 ) = x H\mathbf{x} = \mathbf{x} - 2\mathbf{u}(0) = \mathbf{x} Hx=x−2u(0)=x
这验证了 H H H确实表示关于以 u \mathbf{u} u为法向量的超平面的反射变换。
4 Householder变换的算法实现
4.1 数值稳定的算法设计
在实际数值计算中,算法的数值稳定性至关重要。Dubrulle在2000年提出了生成一般稀疏向量的数值稳定Householder变换算法。以下是计算Householder向量的标准数值稳定算法:
给定向量 x \mathbf{x} x,我们希望计算Householder向量 u \mathbf{u} u和标量 β \beta β,使得 H x = σ e 1 H\mathbf{x} = \sigma\mathbf{e}_1 Hx=σe1,其中$ | \sigma | = \ | \mathbf{x}\ | _2$。
算法步骤:
- 计算 σ = − sign ( x 1 ) ∣ x ∣ 2 \sigma = -\text{sign}(x_1)\ | \mathbf{x}\ | _2 σ=−sign(x1) ∣x ∣2
- 令 u = x \mathbf{u} = \mathbf{x} u=x
- 更新 u 1 = u 1 − σ u_1 = u_1 - \sigma u1=u1−σ
- 计算 β = 2 u ⊤ u = 2 ∣ u ∣ 2 2 \beta = \frac{2}{\mathbf{u}^\top\mathbf{u}} = \frac{2}{\ | \mathbf{u}\ | _2^2} β=u⊤u2= ∣u ∣222
- 返回 u \mathbf{u} u和 β \beta β
这里使用 sign ( x 1 ) \text{sign}(x_1) sign(x1)并取负号是为了避免抵消现象,增强数值稳定性。如果 x 1 x_1 x1是正数,则 x 1 − σ x_1 - \sigma x1−σ是两个相近正数的减法,可能导致有效数字位数的损失。
5 Householder变换在QR分解中的应用
5.1 QR分解的Householder算法
QR分解是将矩阵分解为正交矩阵 Q Q Q和上三角矩阵 R R R乘积的过程,即 A = Q R A = QR A=QR。使用Householder变换进行QR分解是目前数值稳定性最好的方法之一。
算法的基本思想是通过一系列Householder变换 H 1 , H 2 , … , H n H_1, H_2, \ldots, H_n H1,H2,…,Hn,逐步将矩阵 A A A化为上三角形式:
H n ⋯ H 2 H 1 A = R H_n \cdots H_2 H_1 A = R Hn⋯H2H1A=R
由于每个 H i H_i Hi都是正交矩阵,它们的乘积也是正交矩阵,因此我们有:
A = ( H 1 H 2 ⋯ H n ) R = Q R A = (H_1 H_2 \cdots H_n) R = QR A=(H1H2⋯Hn)R=QR
其中 Q = H 1 H 2 ⋯ H n Q = H_1 H_2 \cdots H_n Q=H1H2⋯Hn是正交矩阵。
5.2 QR分解的逐步过程
设 A A A是 m × n m \times n m×n矩阵( m ≥ n m \geq n m≥n)。QR分解的Householder算法步骤如下:
-
第一步:令 a 1 \mathbf{a}_1 a1表示 A A A的第一列。构造Householder变换 H 1 H_1 H1使得 H 1 a 1 = r 11 e 1 H_1\mathbf{a}_1 = r_{11}\mathbf{e}_1 H1a1=r11e1。则:
H 1 A = [ r 11 ∗ ⋯ ∗ 0 ⋮ B 1 0 ] H_1A = \begin{bmatrix} r_{11} & * & \cdots & * \\ 0 & & & \\ \vdots & & B_1 & \\ 0 & & & \end{bmatrix} H1A= r110⋮0∗⋯B1∗
-
第二步:对子矩阵 B 1 B_1 B1的第一列(即原矩阵 A A A的第二列去掉第一个元素)应用Householder变换 H ^ 2 \widehat{H}_2 H 2,并令 H 2 = diag ( 1 , H ^ 2 ) H_2 = \text{diag}(1, \widehat{H}_2) H2=diag(1,H 2)。则:
H 2 H 1 A = [ r 11 r 12 ∗ ⋯ ∗ 0 r 22 ∗ ⋯ ∗ 0 0 ⋮ ⋮ C 2 0 0 ] H_2H_1A = \begin{bmatrix} r_{11} & r_{12} & * & \cdots & * \\ 0 & r_{22} & * & \cdots & * \\ 0 & 0 & & & \\ \vdots & \vdots & & C_2 & \\ 0 & 0 & & & \end{bmatrix} H2H1A= r1100⋮0r12r220⋮0∗∗⋯⋯C2∗∗
-
继续此过程:经过 n n n步(对于列满秩矩阵)后,我们得到上三角矩阵 R = H n ⋯ H 1 A R = H_n \cdots H_1 A R=Hn⋯H1A。
-
重构Q:正交矩阵 Q = H 1 H 2 ⋯ H n Q = H_1 H_2 \cdots H_n Q=H1H2⋯Hn。
在实际实现中,通常不会显式构造 Q Q Q矩阵,而是存储Householder向量,以便后续计算。
6 Householder变换的其他应用
6.1 矩阵三对角化
在对称矩阵特征值问题中,Householder变换可以用于将矩阵化为三对角形式,这是许多特征值算法(如QR算法)的关键预处理步骤。
对于对称矩阵 A A A,我们可以通过一系列Householder变换将其化为三对角矩阵 T T T:
H n − 2 ⋯ H 2 H 1 A H 1 H 2 ⋯ H n − 2 = T H_{n-2} \cdots H_2 H_1 A H_1 H_2 \cdots H_{n-2} = T Hn−2⋯H2H1AH1H2⋯Hn−2=T
这个过程通过 n − 2 n-2 n−2步完成,每一步将一列和一行中的非三对角元素零化。
与Jacobi方法相比,Householder方法具有更高的收敛速度和更好的数值稳定性,特别适用于中大型矩阵的特征值计算。
6.2 最小二乘问题求解
Householder变换在最小二乘问题中也有重要应用。对于超定线性方程组 A x = b Ax = b Ax=b(其中 A A A是 m × n m \times n m×n矩阵, m > n m > n m>n),最小二乘解可以通过QR分解高效求得。
使用Householder变换对 A A A进行QR分解后,最小二乘问题转化为:
min x ∣ A x − b ∣ 2 = min x ∣ Q R x − b ∣ 2 = min x ∣ R x − Q ⊤ b ∣ 2 \min_x \ | Ax - b\ | _2 = \min_x \ | QRx - b\ | _2 = \min_x \ | Rx - Q^\top b\ | _2 xmin ∣Ax−b ∣2=xmin ∣QRx−b ∣2=xmin ∣Rx−Q⊤b ∣2
由于 R R R是上三角矩阵,这个方程组可以通过回代法轻松求解。
与直接解法 x = ( A ⊤ A ) − 1 A ⊤ b x = (A^\top A)^{-1}A^\top b x=(A⊤A)−1A⊤b相比,基于QR分解的方法数值稳定性更好,避免了计算 A ⊤ A A^\top A A⊤A可能导致的条件数平方问题。
6.3 奇异值分解(SVD)
在奇异值分解(SVD)的数值计算中,Householder变换也扮演着重要角色。Golub和Kahan在1965年提出的SVD算法就使用了Householder变换将矩阵双对角化,这是计算SVD的关键步骤。
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!

4万+

被折叠的 条评论
为什么被折叠?



