1.
案例背景
餐饮外卖行业竞争激烈,商家需要准确了解不同菜品、不同时间段的订单情况,预测未来的订单销量,以便合理安排食材采购、人员排班等,从而提高运营效率和盈利能力。
代码实现
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.svm import SVR
from sklearn.metrics import mean_squared_error, r2_score
# 数据读取
data = pd.read_csv('takeout_orders.csv')
# 数据探索性分析
print('数据基本信息:')
data.info()
# 查看数据集行数和列数
rows, columns = data.shape
if rows < 1000:
# 小数据集(行数少于 1000)查看全量数据信息
print('数据全部内容信息:')
print(data.to_csv(sep='\t', na_rep='nan'))
else:
# 大数据集查看数据前几行信息
print('数据前几行内容信息:')
print(data.head().to_csv(sep='\t', na_rep='nan'))
# 数据清洗
# 处理缺失值
data['rating'] = data['rating'].fillna(data['rating'].mean())
data = data.dropna(subset=['order_count'])
# 特征工程
# 提取订单时间的小时和星期几
data['order_hour'] = pd.to_datetime(data['order_time']).dt.hour
data['order_day_of_week'] = pd.to_datetime(data['order_time']).dt.dayofweek
# 对菜品类别进行独热编码
dish_category_dummies = pd.get_dummies(data['dish_category'], prefix='dish_cat')
data = pd.concat([data, dish_category_dummies], axis=1)
# 特征选择
features = ['rating', 'pr