C语言数据结构与算法笔记(排序算法)

本文详细介绍了基础排序算法如冒泡排序、插入排序、选择排序以及它们的优化版本,探讨了稳定性、时间复杂度和空间复杂度。同时,还介绍了进阶排序如快速排序、双轴快速排序和希尔排序,以及堆排序的特点和应用。
摘要由CSDN通过智能技术生成

排序算法

基础排序

冒泡排序

核心为交换,通过不断进行交换,将大的元素一点一点往后移,每一轮最大的元素排到对应的位置上,形成有序。
设数组长度为N,过程为:

  • 共进行N轮排序
  • 每一轮排序从数组的最左边开始,两两元素进行比较,左边元素大于右边元素,就交换两个元素的位置,否则不变。
  • 每轮排序都会将剩余元素中最大的一个推到最右边,下次排序就不再考虑对应位置的元素。

注意交换不能直接进行,需要中间元素。
实际上排序不需要N轮,N-1轮即可,最后一轮只有一个元素未排序。

// 冒泡排序
void BubbleSort(int arr[], int size)
{
    for(int i = 0; i < size-1 ;++i) // 减1是不考虑最后一次交换
    {
        for(int j = 0 ; j < size - i - 1; ++j )
        {
            if(arr[j] > arr[j+1])
            {
                int tmp = arr[j]; // 加入中间元素tmp进行交换
                arr[j] = arr[j+1];
                arr[j+1] = tmp;
            }
        }
    }
}

int main()
{
    int size = 7;
    int arr1[] = {2,4,1,7,4,9,3};
    BubbleSort(arr1, size);
    for(int i = 0 ; i < size;++i)
    {
        printf("%d ", arr1[i]);
    }
}

优化:如果整轮排序中没有出现任何交换,则说明数组是有序的,内层循环中加入标记
没有发生任何交换,则flag一定是1,数组有序

// 改进:没有出现交换则已经有序
void BubbleSort1(int arr[], int size)
{
    for(int i = 0 ; i < size - 1; ++i)
    {
        _Bool flag = 1; // 加入标记
        for(int j = 0 ; j < size - 1 - i; ++j)
        {   
            int tmp =arr[j];
            arr[j] = arr[j+1];
            arr[j+1] = tmp;
        }
        if(flag)
        {
            break;
        }
    }
}

排序稳定性,大小相同的两个元素在排序前和排序后的先后顺序不变,则排序算法就是稳定的。比如以上的冒泡排序法只会在前者大于后者的情况下才会发生交换,不会影响到相等的两个元素。

插入排序

类似于斗地主的插牌。默认一开始只有第一张牌是有序的,剩余部分进行遍历,然后插到前面对应的位置上。
设数组长度为N

  • 一共进行N轮排序
  • 每轮排序会从后面依次选择一个元素,与前面已经处于有序的元素,从后往前比较,直到遇到一个不大于当前元素的元素,将当前元素插入到此元素的前面。
  • 插入元素后,后续元素则全部后移一位。
  • 当后面所有元素全部遍历完成,全部插入到对应位置之后结束排序。
// 插入排序
void InsertSort(int arr[], int size)
{
    for(int i = 1; i < size -1; ++i) // 从第2个元素开始
    {
        int tmp = arr[i], j = i;
        while (j > 0 && arr[j-1] > tmp) // 只要j>0并且前一个元素大于当前元素
        {
            arr[j] = arr[j-1]; // 交换前一个元素
            j--;
        }
        arr[j] = tmp;
    }
}
int main()
{
    int arr1[] = {2,1,8,5,6,4};
    InsertSort(arr1, 6);
    printArray(arr1, 6);     
}

改进:寻找插入位置上逐个比较,花费时间长,如果前面一部分元素已经是有序状态,可以考虑使用二分搜索算法来查找对应的插入位置,节省插入点的时间。

// 二分搜索法
int BinarySearch(int arr[], int left, int right, int target)
{
    int mid;
    while(left <= right)
    {
        mid = (left + right) / 2;
        if(target == arr[mid])
        {
            return mid + 1;
        }
        else if (target < arr[mid])
        {
            right = mid - 1; // 目标值小于中间的值,往左边去找
        }
        else
        {
            left = mid + 1; // 往右边去找
        }
    }
    return left; // 二分划分范围,left就是插入的位置
}
// 改进的插入排序
void InsertSort1(int arr[], int size)
{
    for(int i = 0 ; i < size; ++i)
    {
        int tmp = arr[i];
        int j = BinarySearch(arr,0,size-1,arr[i]); // 二分搜索查找插入的位置
        for( int k = i ; k > j; k--)
        {
            arr[k] = arr[k-1]; // 往后移
        }
        arr[j] = tmp;
    }
}

算法稳定性,在优化前的插入排序,实际上是不断向前寻找一个不大于待插入元素的元素,相等时只会插入到其后面,不会修改相等元素的顺序;而改进后的二分搜索法,可能会将两个连续相等元素分割开来。

选择排序

每次都去后面找一个最小的放到前面。
设数组长度为N

  • 共进行N轮排序
  • 每轮排序会从后面的所有元素中寻找一个最小的元素,与已经排序好的下一个位置进行互换
  • 进行N轮交换后,得到有序数组
// 选择排序
void SelectSort(int arr[], int size)
{
    for(int i = 0 ; i < size - 1; ++i) // N-1轮排序
    {
        int min = i ; // 记录当前最小的元素,默认是剩余元素中的第一个
        for(int j = i + 1; j < size;++j)
        {
            if(arr[min] > arr[j])
            {
                min = j; 
            }
            int tmp = arr[i]; // 找出最小元素之后,开始交换
            arr[i] = arr[min];
            arr[min] = tmp;
        }
    }
}
// 打印
void printArray(int arr[],int size)
{
    for(int i = 0 ; i < size;++i)
    {
        printf("%d ", arr[i]);
    }
}
int main()
{
    int arr1[] = {2,9,6,8,3,6,5};
    SelectSort(arr1 , 7);
    printArray(arr1, 7);
}

改进:因为每次需要选一个最小的,不妨顺便选个最大的,小的往左边丢,大的往右边丢。

// 交换
void swap(int* a, int*b)
{
    int tmp = *a;
    *a = *b;
    *b = tmp;
}
// 优化的选择排序
void SelectSort1(int arr[], int size)
{
    int left=0, right = size - 1; // 假设左右排好序,往中间缩小
    while (left < right)
    {
        int max = right, min = left;
        for(int i = left; i < right; ++i)
        {
            // 同时找最大和最小的
            if(arr[i] < arr[min])
            {
                min = i;
            }
            if(arr[i] > arr[max])
            {
                max = i;
            }
        }
        swap(&arr[max], &arr[right]); // 先把大的换到右边
        // 大的换到右边之后,有可能被换出来的是最小的,需要判断以下
        // 如果遍历完最小的是当前右边排序的第一个元素
        // 将min换到那个位置
        if(min == right)
        {
            min = max;
        }
        swap(&arr[min], &arr[left]);
        left++;
        right--;
    }  
}

稳定性:由于每次寻找的是最小的元素,向前插入时会发生交换操作,当存在两个连续相等元素,破坏了原有的顺序。不稳定的。

比较三种基础排序

冒泡排序(优化后)

  • 最好情况时间复杂度:O(n),本身是有序的,只需要一次遍历。
  • 最坏情况时间复杂度:O(n^2),倒序。
  • 空间复杂度:O(1),只需要一个变量存储需要交换的变量
  • 稳定
    插入排序
  • 最好情况时间复杂度:O(n),本身是有序的,插入的位置也是同样的位置,不变动任何元素
  • 最坏情况时间复杂度:O(n^2),倒序。
  • 空间复杂度:O(1),只需要一个变量存储抽出来的元素
  • 稳定
    选择排序
  • 最好情况时间复杂度:O(n^2),即使数组本身是有序的,每一轮还得将剩余部分依次找完才确定最小的元素
  • 最坏情况时间复杂度:O(n^2)
  • 空间复杂度:每一轮需要记录最小元素位置,空间复杂度为O(1)
  • 不稳定

进阶排序

快速排序

快速排序是冒泡排序的进阶版,由于冒泡排序是对相邻元素进行比较和交换,每次只能移动一个位置,效率相对较低;而快速排序是从两端向中间进行,一轮就可将较小的元素交换到左边,较大的元素交换到右边。

实际上每一轮目的就是将较大的丢到基准右边,较小的丢到基准左边

  • 一开始排序为整个数组
  • 排序之前,以第一个元素作为基准
  • 从最右边向左看,依次将每一个元素与基准元素进行比较,如果该元素比基准元素小,就与左边遍历位置上的元素(一开始为基准元素位置)进行交换,保留右边当前遍历的位置
  • 交换后,转为从左边往右开始遍历元素,如果发现比基准元素大,则与之前保留右边遍历的位置上元素进行交换,同样保留左边当前遍历的位置
  • 当左右遍历撞到一起,本轮快速排序完成,中间的位置元素就是基准元素
  • 以基准位置为中心,划分左右两边,同样方式进行

代码实现

// 快速排序
void QuickSort(int arr[], int start, int end)
{
    if(start >= end) // 不满足初始位置则返回
    {
        return;
    }
    int left = start, right = end; // 定义两个指向左右两个端点的指针
    int pivot = arr[left]; // 预先确定基准点为左端第一个元素
    while (left < right)
    {
        while(left < right && arr[right] >= pivot)
        {
            right--;// 从右往左看
        }
        arr[left] = arr[right]; // 比基准值小就放到左边去
        while (left < right&& arr[left]  <= pivot)
        {
            left++; // 从左往右看
        }
        arr[right] = arr[left]; // 比基准值大就放到右边
        arr[left] =pivot; //相遇位置即为基准存放的位置
    }
    QuickSort(arr, start , left-1); //划分基准左边
    QuickSort(arr, left+1, end); // 划分基准右边, 再次进行快速排序
}

测试

int main()
{
    int arr1[]= {9,3,6,3,4,8,1,2};
    QuickSort(arr1, 0 , 8);
    for(int i = 0; i < 8 ; ++i)
    {
        printf("%d ", arr1[i]);
    }
}

双轴快速排序

快速排序的升级版,双轴快速排序,可对大数组进行。如果遇到数组完全倒序的情况
在这里插入图片描述
每一轮需要完整遍历整个范围,每一轮最大或最小的元素被推向两边,则此完全倒序情况快速排序退化为冒泡排序。为解决这种极端情况,再添加一个基准元素,使得数组可分为三段。
在这里插入图片描述
分为三段后,每轮双轴排序结束后对三段继续进行双轴快速排序。该适用于那些量比较大的数组。

首先取出首元素和尾元素作为两个基准,对其进行比较,若基准1大于基准2,先交换两个基准。
在这里插入图片描述
需要创建三个指针
在这里插入图片描述
从橙色指针所指元素开始进行判断,

  • 小于基准1,那需要先将蓝色指针向后移,把元素交换到蓝色指针那去,然后橙色指针也向后移动
  • 不小于基准1且不大于基准2,直接把橙色指针向前移动即可
  • 大于基准2,需要丢到右边去,先将右边指针左移,不断向前找到一个比基准2小的,进行交换
    橙色指针与绿色指针之间即为待排序区域
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    代码实现:
void swap(int* a, int*b)
{
    int tmp = *a;
    *a = *b;
    *b = tmp;
}

void dualPivotQuickSort(int arr[], int start, int end)
{
    if(start >= end)
    {
        return; // 结束条件
    }
    if(arr[start] > arr[end]) // 首尾两个基准比较
    {
        swap(&arr[start], &arr[end]); // 大的换到后面
    }
    int pivot1 = arr[start], pivot2 = arr[end]; // 取出两个基准元素
    int left = start, right = end, mid = left + 1; // 分三个区域,三个指针
    while (mid < right)
    {
        if(arr[mid] < pivot1) // mid所指向元素小于基准1,需要放到最左边
        {
            swap(&arr[++left], &arr[mid++]); // 和最左边交换,left 和 mid向前移动
        }
        else if(arr[mid] <= pivot2) // 不小于基准1但小于基准2,在中间
        {
            mid++; // 本身在中间,向前移动以缩小范围
        }
        else // 右边的情况
        {
            while (arr[--right] > pivot2 && right > mid); // 先移动右边指针,需要右边位置来存放需要换过来的元素
            
            if(mid >= right)
            {
                break; // 剩余元素找完,没有比基准2小的,可直接结束
            }
            swap(&arr[mid], &arr[right]); // 还有剩余元素,找到比基准2小的,直接交换   
        }
    } 
    swap(&arr[left], &arr[start]); // 基准1与left交换,基准1左边元素都比其小
    swap(&arr[right],&arr[end]); // 基准2与right交换,基准2右边元素都比其大
    // 继续对剩下三个区域双轴快速排序
    dualPivotQuickSort(arr, start,left-1);
    dualPivotQuickSort(arr, left+1, right-1);
    dualPivotQuickSort(arr, right+1, end);
}
    dualPivotQuickSort(arr1, 0, 8);
    for(int i = 0; i < 8 ; ++i)
    {
        printf("%d ", arr1[i]);
    }

希尔排序(缩小增量排序)

直接插入排序的进阶版,极端情况会出现让所有已排序元素后移的情况(比如刚好要插入的是一个特别小的元素),为解决这种问题,对整个数组按照步长进行分组,优先比较距离较远的元素。

步长是由一个增量序列,当增量序列一般使用 n 2 、 n 4 、 n 8 . . . 、 1 \frac{n}{2}、\frac{n}{4}、\frac{n}{8}...、1 2n4n8n...1这样的序列。
设数组长度为N,详细过程为:

  1. 求出最初步长,n/2
  2. 整个数组按照步长进行分组,两两一组(n为奇数,第一组有三个元素)
  3. 分别在分组内插入排序
  4. 排序后,将步长/2,重新分组,重复上述步骤,直到步长为1,插入排序最后一遍结束
    在这里插入图片描述
    插入排序后,小的元素尽可能地向前走,缩小步长,4/2=2
    在这里插入图片描述
    代码实现
// 希尔排序
void shellSort(int arr[], int size)
{
    int delta = size / 2;
    while (delta >= 1) // 使用之前的插入排序,此时需要考虑分组
    {
        for(int i = delta; i < size; ++i) // 从delta开始,前delta个组的第一个元素默认是有序状态
        {
            int j = i, tmp = arr[i]; // 依然是把待插入的先抽出来
            while (j >= delta && arr[j - delta] > tmp) 
            {
                // 需要按步长往回走,所以是j-delta,j必须大于等于delta才可以,j-delta小于0说明前面没有元素
                arr[j] = arr[j - delta];
                j -= delta;
            }
            arr[j] = tmp;
        }
        delta /= 2; // 分组插排结束之后,再计算步长
    }
} 
int main()
{
    int arr[] = {3,5,7,2,9,0,6,1,8,4};
    shellSort(arr, 10);
    for(int i = 0 ; i < 10; ++i)
    {
        printf("%d ", arr[i]);
    }
}

尽管有循环多次,但时间复杂度比O(n^2)小,小的元素往左靠。希尔排序不稳定,因为按步长分组,有可能相邻得两个相同元素,后者在自己组内被换到前面去。

堆排序

选择排序一种,但能比选择排序更快。
小根堆(小顶堆),对一棵不完全二叉树,树中父亲结点都比孩子结点小;大根堆(大顶堆)树中父亲结点都比孩子节点大。
堆是一棵完全二叉树,数组来表示
在这里插入图片描述
构建一个堆,将一个无序的数组依次输入,最后存放的序列是一个按顺序排放的序列。

但仍需要额外O(n)的空间作为堆,可以对其进一步优化,减少空间上的占用。直接对给定的数组进行堆的构建
设数组长度为N

  • 将给定数组调整为大顶堆
  • 进行N轮选择,每次选择大顶堆顶端元素从数组末尾开始向前存放(交换堆顶和堆的最后一个元素)
  • 交换完成后,重新对堆的根节点进行调整,使其继续满足大顶堆的性质
  • 当N轮结束后,得到从小到大的数组
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值