torch模型介绍,如何保存模型,torch.nn.Module类介绍和使用方法 .....我们在定义自己的网络的时候,需要继承nn.Module类,并重新实现构造函数__init__和forward前向传播这两个方法。(1)一般把网络中具有可学习参数的层(如全连接层、卷积层等)放在构造函数__init__()中,当然也可以吧不具有参数的层也放在里面;
【训练踩坑记录】 安装pycocotools,libffi.so.6: cannot open Ubuntu 20.04 将 libffi6 升级到了 libffi7。复制上面的路径/usr/lib/x86_64-linux-gnu/Python 仍然在找 libffi6。做一个软连接 链接到libffi6即可。
相机Lidar联合标定 PnP(Perspective-n-Point)是求解3D到2D点对运动的方法,目的是求解相机坐标系相对世界坐标系的位姿。个3D点的坐标(相对世界坐标系)以及这些点的像素坐标时,如何估计相机的位姿(即求解世界坐标系到相机坐标系的旋转矩阵。
3D检测KITTI数据集 3D目标检测是计算机视觉领域中的一项任务,旨在从三维空间中的传感器数据(例如激光雷达点云或深度图像)中准确地检测和定位物体。与传统的2D目标检测不同,3D目标检测需要在三维空间中确定物体的位置(x、y、z坐标),同时还需要确定物体的尺寸和方向。这使得3D目标检测成为一项更具挑战性的任务。即:物体的位置(x, y, z)、尺寸(x_size, y_size, z_size)以及大致方向(框的朝向角)
PointPillars:基于点云的目标检测快速解码器 3D点云检测 论文阅读 点云中的目标检测是许多机器人应用中的重要方面,例如自动驾驶。在本文中,我们考虑将点云编码为适合下游检测流程的格式的问题。最近的文献提出了两种类型的编码器;固定编码器倾向于快速但牺牲准确性,而从数据中学习的编码器更准确但较慢。在这项工作中,我们提出了PointPillars,一种新型编码器,它利用PointNets来学习以垂直列(pillar)组织的点云的表示。虽然编码后的特征可以与任何标准的2D卷积检测架构一起使用,但我们进一步提出了一个精简的下游网络。广泛的实验表明,PointPillars在速度和准确性
YOLO代码详解(二) if self.multiscale and self.batch_count % 10 == 0: self.img_size = random.choice(range(self.min_size, self.max_size + 1, 32)):这行代码根据条件判断是否需要对图像进行多尺度处理。通过循环遍历图像列表,对每个图像使用resize函数调整为指定的尺寸self.img_size,然后使用torch.stack函数将调整后的图像张量堆叠起来,形成一个批次的图像张量。
yolo中cfg文件读取,说明和理解, yolo层 route层 net层 route层之前一般是yolo层或者upsample层,yolo层或者upsample层的结果不用管,后面会有对应的route来接它。route的作用是引出之前的feature结果或者是将之前两层的feature 进行concat,再作为下一层的输入。本质上,他是一个融合层,它的作用是在当前层引出之前卷积所得到的特征层。本质上,他是一个新的起点。
归一化流模型 然而,由于潜在变量上的相关边际分布难以实现,它们的训练、评估和抽样程序需要使用诸如平均场推理和马尔可夫链蒙特卡罗等近似方法,这些复杂模型的收敛时间仍然不确定,往往导致产生高度相关的样本。然而,衡量生成样本中多样性的指标是目前是难以处理的。我们使用实值非体积保存(real NVP)转换,结果得到了一个具有精确对数似然计算的,精确有效的抽样,潜在变量的推断,以及可解释的潜在空间的无监督学习算法。由于感兴趣的数据通常是高维的和高度结构化的,在这个领域的挑战是建立足够强大的模型,以捕获其复杂性,但仍然是可训练的。
通过条件归一化流的定位实时无监督异常检测 我们的方法构建了一个计算高效和存储高效的模型:在相同的输入设置下,CFLOW-AD比之前的最先进的技术更快、更小10倍。最后,对于异常的标记是主观的,需要广泛的领域专业知识,如图1所示的工业电缆缺陷。由于监督学习异常检测的这些限制,只为训练Dtrain未标记的无异常图像的训练数据集是一个更具有吸引力的方法,如图1(上一行)所示。其中随机变量ui = g−1(zi,ci,θ)、CFLOW解码器的雅可比矩阵Ji =∇zg−1(zi,ci,θ)和DKL中的期望操作被大小为n的经验训练数据集取代。
yolopose论文阅读 与自顶向下的方法不同,YOLO-Pose的复杂性与图像中的人数无关。多数现代的目标检测器优化IoU,出现了其高级变体例如GIoU,DIoU和CIoU等损失,替代了基于距离的用于边界框预测的损失,因为这些损失是尺度不变的,并能够直接优化评估策略本身。推断一个图像中多个人的姿势可以是有挑战性的,因为图像中人数的可变,尺度的可变,身体部位的遮挡,人体的非刚性,以及其他各种原因。该方法不需要对自底向上的方法进行后处理,以将检测到的关键点分组到一个骨架中,因为每个边界框都有一个相关的姿态,从而导致关键点的固有分组。