归一化流模型

文章介绍了一种名为实值非体积保留(realNVP)的转换方法,用于无监督学习中的概率模型构建。这种方法允许精确的对数似然计算、采样和潜在变量的推断,尤其适用于高维数据。通过realNVP,模型能够有效地处理自然图像的建模任务,包括采样、对数似然评估和潜在变量操作。此外,它还利用批标准化和残差网络技术实现多尺度的层次结构,提高了模型的灵活性和性能。
摘要由CSDN通过智能技术生成

DENSITY ESTIMATION USING REAL NVP

使用真实的NVP进行密度估计

摘要

  Unsupervised learning of probabilistic models is a central yet challenging problem in machine learning. Specifically, designing models with tractable learning, sampling, inference and evaluation is crucial in solving this task. We extend the space of such models using real-valued non-volume preserving (real NVP)transformations, a set of powerful, stably invertible, and learnable transformations, resulting in an unsupervised learning algorithm with exact log-likelihood computation, exact and efficient sampling, exact and efficient inference of latent variables, and an interpretable latent space. We demonstrate its ability to model natural images on four datasets through sampling, log-likelihood evaluation, and latent variable
manipulations.
  概率模型的无监督学习是机器学习中一个核心但具有挑战性的问题。具体来说,设计具有易于处理的学习、抽样、推理和评估的模型对于解决这一任务至关重要。我们使用实值非体积保存(real NVP)转换,结果得到了一个具有精确对数似然计算的,精确有效的抽样,潜在变量的推断,以及可解释的潜在空间的无监督学习算法。我们通过采样、对数似然评估和潜在变量操作,证明了它在四个数据集上建模自然图像的能力。

引言

  由于监督学习技术的改进,表示学习领域取得了巨大的进步。然而,无监督学习有潜在的可利用的大量未标记数据池,并将这些监督学习的进展扩展到在其他方面是难以操作以及不可能的。
  无监督学习的一个原则方法是生成概率建模。生成概率模型不仅有创建新内容的能力,而且还有广泛的重建相关应用,包括绘制[61,46,59]、去噪[3]、着色[71]和超分辨率[9]。
  由于感兴趣的数据通常是高维的和高度结构化的,在这个领域的挑战是建立足够强大的模型,以捕获其复杂性,但仍然是可训练的。我们通过引入实值非体积保留(真实NVP)转换来解决这一挑战,这是一种易于处理但易于表达的对高维数据建模的方法。该模型可以对数据点进行有效、精确的推断、采样和对数密度估计。此外,本文提出的体系结构能够从该模型提取的层次特征中精确、高效地重建输入图像。

相关研究

  概率生成模型的大量工作集中在使用最大似然训练模型。一类最大似然模型是由概率无向图描述的模型,如受限玻尔兹曼机[58]和深度玻尔兹曼机[53]。这些模型是通过利用其二部图结构的条件独立性特性来进行训练的,以允许对潜在变量进行有效的精确或近似的后验推理。然而,由于潜在变量上的相关边际分布难以实现,它们的训练、评估和抽样程序需要使用诸如平均场推理和马尔可夫链蒙特卡罗等近似方法,这些复杂模型的收敛时间仍然不确定,往往导致产生高度相关的样本。此外,这些近似往往会阻碍它们的性能[7]。
  另一方面,生成对抗网络(GANs)可以通过完全避免最大似然原理来训练任何可微的生成网络。相反,生成网络与一个鉴别器网络相关联,其任务是区分样本和真实数据。这种鉴别器网络不是使用难以处理的对数似然法,而是以对抗的方式提供训练信号。成功训练的GAN模型可以一致地生成清晰和真实的样本。然而,衡量生成样本中多样性的指标是目前是难以处理的。此外,他们的训练过程的不稳定性需要仔细的超参数调整,以避免发散行为。
  训练这样一个生成式网络 g g g,网络映射潜在变量 z ∼ p Z z \sim p_Z zpZ到一个样本 x ∼ p X x \sim p_X xpX理论上不像GANs那样需要鉴别网络,或者是变分自编码器中的近似推理。事实上,如果g是双射的,它可以通过变量公式的变化通过最大似然来训练:
在这里插入图片描述
  该公式已在几篇论文中被讨论过,包括独立分量分析(ICA)的最大似然公式,高斯化和深密度模型。正如非线性ICA解[29]的存在性证明所表明的那样,自回归模型可以看作是最大似然非线性ICA的可处理实例,其中残差对应于独立分量。然而,变量公式变化的简单应用产生的模型计算昂贵和条件差,因此这种类型的大规模模型没有进入普遍使用。

模型定义

  在本文中,我们将通过极大似然学习高维连续空间中高度非线性模型的问题。为了优化对数似然,我们引入了一种更灵活的架构,允许使用改变变量公式对连续数据计算对数似然。基于我们之前的工作,我们定义了一类强大的双射函数,它使精确和易于处理的密度评估和精确和易于处理的推理。此外,所得到的代价函数不依赖于固定形式的重建代价,如平方误差[38,47],从而生成更清晰的样本。此外,这种灵活性帮助我们利用批标准化[31]和残差网络[24,25]方面的最新进展来定义具有多个抽象层次的多尺度体系结构。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值