POJ 3517 And Then There Was One (约瑟夫环问题)


经典的约瑟夫环问题嘛。有点小小的变形而已。给你N个人围成一个环(编号1~N),从第M个人开始,每隔K个人报一次数,报数的人离开该环。

求最后剩下的人的编号。

约瑟夫问题的数学递推解法:

(1)第一个被删除的数为 (m - 1) % n。

        (2)假设第二轮的开始数字为k,那么这n - 1个数构成的约瑟夫环为k, k + 1, k + 2, k +3, .....,k - 3, k - 2。做一个简单的映射。

             k         ----->  0 
             k+1    ------> 1 
             k+2    ------> 2 
               ... 
               ... 

             k-2    ------>  n-2 

        这是一个n -1个人的问题,如果能从n - 1个人问题的解推出 n 个人问题的解,从而得到一个递推公式,那么问题就解决了。假如我们已经知道了n -1个人时,最后胜利者的编号为x,利用映射关系逆推,就可以得出n个人时,胜利者的编号为 (x + k) % n。其中k等于m % n。代入(x + k) % n  <=>  (x + (m % n))%n <=> (x%n + (m%n)%n)%n <=> (x%n+m%n)%n <=> (x+m)%n

        (3)第二个被删除的数为(m - 1) % (n - 1)。

        (4)假设第三轮的开始数字为o,那么这n - 2个数构成的约瑟夫环为o, o + 1, o + 2,......o - 3, o - 2.。继续做映射。

             o         ----->  0 
             o+1    ------> 1 
             o+2    ------> 2 
               ... 
               ... 

             o-2     ------>  n-3 

         这是一个n - 2个人的问题。假设最后的胜利者为y,那么n -1个人时,胜利者为 (y + o) % (n -1 ),其中o等于m % (n -1 )。代入可得 (y+m) % (n-1)

         要得到n - 1个人问题的解,只需得到n - 2个人问题的解,倒推下去。只有一个人时,胜利者就是编号0。下面给出递推式:

          f [1] = 0; 
          f [ i ] = ( f [i -1] + m) % i; (i>1) 


约瑟夫问题详解请戳:http://blog.csdn.net/wuzhekai1985/article/details/6628491

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

有了以上递推式,还不赶快码之,AC之~

#include<cstdio>
#include<algorithm>
using namespace std;

int main()
{
    int n,m,k;
    while(~scanf("%d%d%d",&n,&k,&m),m||k||n)
    {
        int s=0;
        for(int i=2;i<=n-1;i++)
            s=(s+k)%i;  //不用开数组哟。
        printf("%d\n",(s+m)%n+1);
    }
    return 0;
}





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值